
TAM’97 — TAM.fm 1/73 June 19, 1997 3:02 pm

TAM’97:

the Trace Assertion Method

of Module Interface Specification.

Reference Manual

Michal Iglewskia, Marcin Kubicab, Jan Madeyb, Janina Mincer-Daszkiewiczb, Krzysztof Stencelb

a. Département d’informatique, Université du Québec à Hull, Hull, Québec, Canada J8X 3X7
Email: iglewski@uqah.uquebec.ca Tel: (819) 773 1602 Fax: (819) 773 1638

b. Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
Email: Firstname.Lastname@mimuw.edu.pl Tel: (48-22) 658 3165 Fax: (48-22) 658 3164

ABSTRACT

A software module may be described precisely and completely by a set of related documents: interface
specification of the module providing a “black-box” description of its behavior, internal design of the
module containing its “clear-box” description, and the code itself. A special formalism is needed in
each of these documents. We use the Trace Assertion Method for specification of module interfaces.
This paper contains a description of the Trace Assertion Method: we present the syntax of trace speci-
fications and define their semantics using the natural language.

TAM’97 — TAM.fm 2/73 June 19, 1997 3:02 pm

Chapter 1 Introduction

Formal specification techniques are increasingly being recognized as essential means for the development of reliable
software. Numerous projects have demonstrated that formal methods can be successfully applied in practice (see e.g.
[4]). However, we are still a long way from their systematic use in commercial applications. What is needed is an over-
all software methodology which would integrate methods of software engineering generally accepted by practitioners
with formal specification techniques advocated by theoreticians. What is further needed is a set of integrated tools to
support the systematic development of software from specifications to code.

The foundations for such a methodology were laid nearly 20 years ago [18]. According to criteria enunciated in
the early 1970s and now widely accepted, software should be hierarchically structured and consist of a set of informa-
tion-hiding modules [17]. A module implements objects which can be manipulated from outside the module by means
of its access-programs. The description of each module consists of three documents. A module interface specification

provides a “black-box” view of the module. A module internal design is prepared for every implementation of the
module interface specification. It presents the module’s internal data structures and the effect of its access-programs
on the state of that structure, i.e., it provides a “clear-box” description. The third document is the code of the module.
In a multi-module project an additional document is needed, a project guide, which gathers data concerning all mod-
ules within the project. All documents should be precise, complete, and consistent. They constitute a series of specifi-
cations starting at a general level and successively introducing more details. They should be formal enough that each
specification can be verified to ensure it meets the requirements of its predecessor. The whole documentation and spec-
ification process should be embedded within a sound and practically verified software engineering framework [8, 19].

The purpose of the project undertaken by the Université du Québec à Hull and Warsaw University was to imple-
ment an integrated set of tools supporting this methodology [6, 21]. We chose the Trace Assertion Method [1, 20] as
the formalism for specifying module interfaces. Since its very first application in the A-7E Project [3], the Trace As-
sertion Method has undergone many modifications, aiming at laying sound mathematical foundations [7, 10, 14, 15,
22], improving notation [9], and making it more practically-oriented [2, 9, 11]. However, a complete formal descrip-
tion of the Trace Assertion Method has not been presented yet.

In this paper we have attempted to describe formally the Trace Assertion Method. For that purpose we had to
clarify many issues and to introduce some new modifications to the method. To distinguish the resulted version of the
trace assertion method from its predecessors we call it TAM'97 (in short: TAM).

Preparing a formal description of a specification method is a complex, difficult, time-consuming, and error-prone
task. Though we did our best to make the description of TAM as complete, uniform, and correct, as possible, we are
sure that a careful reader might find some remaining flaws. We would be very grateful for any comments and/or cor-
rections.

The structure of this paper is as follows. In Chapter 2 we explain the main concepts of TAM. Chapter 3 describes
notational conventions used in this paper and the basic notions. Chapter 4 details the expressions used in TAM, while
Chapter 5 determines the structure of a trace specification. Chapter 6 sketches properties of basic types. Their specifi-
cations are given in Appendices A, B and C. Appendix D contains a sample specification.

Acknowledgments

This work was partly supported by the NATO Linkage grant (HTECH. LG. 941314), the State Committee for
Scientific Research in Poland (KBN, grant 8 S503 040 04), and by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

TAM’97 — TAM.fm 3/73 June 19, 1997 3:02 pm

References

1. Bartussek, W., Parnas, D.L., “Using Traces to Write Abstract Specifications for Software Modules”, in Proc. 2nd

Conference of European Cooperation in Informatics, Springer-Verlag, LNCS 65, 1978, pp. 211-236; Reprinted
in Gehani, N., McGettrick, A.D. (Eds.), Software Specification Techniques, AT&T Bell Telephone Laboratories,
1985, pp. 111-130.

2. Bojanowski, J., Iglewski, M., Madey, J., Obaid, A., “Functional Approach to Protocols Specification”, in Proto-

col Specification, Testing and Verification XIV, Vuong, S.T., Chanson, S.T. (Eds.), Chapman & Hall, 1995, pp.
395-402.

3. Britton, K.H., Clements, P.C., Parnas, D.L., Weiss, D.M., “Interface Specifications for the SCR (A-7E) Extended
Computer Module”, U.S. Naval Res. Lab., Washington D.C., NRL Memorandum Rep. 5502, 1984; p. 129.

4. Craigen, D., Gerhart, S., Ralston, T.J., “An International Survey of Industrial Applications of Formal Methods”,
NISTGCR 93/626, it can be obtained by ftp from hissa.ncsl.nist.gov.

5. Desrosiers, B., Iglewski, M., Obaid, A., “Utilisation de la méthode de traces pour la définition formelle d'un pro-
tocole de communication”, Electronic Journal on Networks and Distributed Processing, No. 2, September 1995,
pp. 57-73.

6. Iglewski, M., Kubica, M., Madey, J., “An Editor for the Trace Assertion Method”, in Proceedings of the 10th In-

ternational Conference of CAD/CAM, Robotics and Factories of the Future: CARs & FOF’94, M.Zaremba (Ed.),
OCRI, Ottawa, Ontario, Canada,1994, pp.876-881.

7. Iglewski, M., Kubica, M., Madey, J., “Trace Specifications of Non-deterministic Multi-object Modules”, in Algo-

rithms, Concurrency and Knowledge, K.Kanchacasut, J-J.Levy (Eds.), Proceedings of the 1995 Asian Computer

Science Conference, Pathumthani, Thailand, December 1995, Springer-Verlag LNCS 1023, 1995, pp.381-395.

8. Iglewski, M., Kubica, M., Madey, J., Mincer-Daszkiewicz, J., Stencel, K., “The Fun-Project: From Requirements
Specification to Program Presentation”, Warsaw University, Institute of Informatics, Warsaw, Poland, Technical

Report TR 95-18 (218), 1995, p. 27.

9. Iglewski, M., Madey, J., Parnas, D.L., Kelly, P.C., “Documentation Paradigms”, CRL Report No. 270, McMaster
University, CRL, Telecommunication Research Institute of Ontario (TRIO), Hamilton, Ontario, Canada, 1993.

10. Iglewski, M., Madey, J., Stencel, K., “On Fundamentals of the Trace Assertion Method”, Technical Report RR
94/09-6, Université du Québec à Hull, Hull, Québec, Canada, 1994.

11. Iglewski, M., Mincer-Daszkiewicz, J., Stencel, K., “Case Study in Trace Specification of Non-deterministic
Modules”, in Proceedings of the CS&P’95 Workshop, Warsaw, Poland, October 11-13, 1995.

12. Janicki, R., “On Foundations of the Trace Assertion Method”, Technical Report TR 95-04, McMaster University,
Dep. of Computer Science and Systems, Hamilton, Ont. 1995, p.35.

13. Kolodziejski, P., Majewska, M., “Specification of UNIX File System in the Trace Assertion Method” [in Polish],
MSc Thesis, Warsaw University, Institute of Informatics, 1996, p.196.

14. Lasota, S., “Semantics of specifications in the Trace Assertion Method” [in Polish], MSc Thesis, Warsaw Uni-
versity, Institute of Informatics, 1995, p.44.

15. McLean, J.D., “A Formal Foundation for the Abstract Specification of Software”, Journal of the ACM, Vol. 31,
No. 3, July 1984, pp. 600-627.

16. Norvell, T.S., “On Trace Specifications”, CRL Report 305, McMaster University, Communications Research
Laboratory (CRL), July 1995, p.45.

17. Parnas, D.L, “On the Criteria To Be Used in Decomposing Systems Into Modules”, Communnication of the

ACM, 15(12), 1972, pp. 1053–1058.

18. Parnas, D.L., “The Use of Precise Specifications in the Development of Software”, Proceedings of the IFIP Con-

gress, 1977, North Holland Publishing Company, pp. 861–867.

19. Parnas, D.L., Madey, J., “Functional Documents for Computer Systems”, Science of Computer Programming,

Vol. 25, 1995, pp. 41-61.

TAM’97 — TAM.fm 4/73 June 19, 1997 3:02 pm

20. Parnas, D.L., Wang, Y., “The Trace Assertion Method of Module Interface Specification”, Technical Report 89-
261, Queen’s University, C&IS, Telecommunication Research Institute of Ontario (TRIO), Kingston, Ontario,
Canada, 1989.

21. Stencel, K., “Refined Simulation Techniques for the Trace Assertion Method”, Warsaw University, Institute of
Informatics, Warsaw, Poland, Technical Report TR 95-17 (217), 1995, p. 11.

22. Wang, Y., “Specifying and Simulating the Externally Observable Behavior of Modules”, (Ph.D. Thesis), CRL

Report No. 292, McMaster University, CRL, Telecommunication Research Institute of Ontario (TRIO), Hamil-
ton, Ontario, Canada, 1994.

TAM’97 — TAM.fm 5/73 June 19, 1997 3:02 pm

Chapter 2 Foundations of TAM

2.1 Basic concepts

The Trace Assertion Method describes software modules as observed by external observers. Each such module imple-
ments a set of homogeneous and independent objects. From a programmer’s point of view such modules deliver ab-

stract data types. Objects correspond to state machines and they are homogeneous in that sense that their behavior is
indistinguishable for the observer of the module. We adopt basic concepts of the automata theory, such as states,
events, and outputs. In particular, an object is defined as an entity with the following properties:

• it has states, can be affected by events, and produces outputs,

• it is in one of its states at every instant of time; initially it is in the initial state,

• it may change its state only as the result of an event,

• outputs may be produced only in response to events,

• at most one event may occur at any given instant of time,

• the set of possible pairs consisting of the next state and the produced output depends exclusively on:

- the present state of this entity,

- the event affecting this entity.

In the remainder of this chapter we assume that the object under observation is settled. The only observable as-
pects of the object’s behavior are events affecting the object and the outputs produced in response to these events. A
history of the object can thus be represented by a finite sequence of event-output pairs. Such sequences are called trac-

es. More formally, let E denote the set of events that can affect the object and O denote the set of produced outputs.

The set of all traces of the object is equal to (E × O)*, where X* denotes the set of finite sequences of elements from
X, including the empty one. Subsequent pairs are separated by the dot, “.”, i.e. a trace has the form (e1, o1).(e2, o2). ...

.(en, on), where n is a non-negative integer and for each i ∈{1,2,...,n}, ei ∈ E and oi ∈ O. The empty sequence is called

the empty trace and denoted by the underscore, “_”; it represents the history of the object affected by no events. The
dot is also used as an operator defined on traces. If T1 and T2 are traces, then T1.T2 is the trace obtained by concatena-

tion of T1 and T2. The empty trace is the neutral element of the dot operation.

Traces are intended to represent the externally visible behavior of the object. We limit our observations to se-
quences of events representing “proper” usage of the object. The fact whether an event is legal is defined by the legality
function described in Section 2.2. The subset of the set of all traces corresponding to proper usage is called the set of
proper traces. The behavior of the object is only specified for proper traces. To fully specify the observable aspects of
the object's behavior it is sufficient to define the subset of the set of proper traces which corresponds to possible his-
tories of the object — it is called the set of feasible traces. The sets of proper and feasible traces can be recursively
characterized in the following way:

• the empty trace is both proper and feasible,

• the trace T.(e,o) is proper if the trace T is feasible and the event e is legal for the object whose trace is T,

• the trace T.(e,o) is feasible if the trace T.(e,o) is proper and o ∈ O is one of the possible outputs produced by the
object, whose trace is T, when affected by the event e ∈ E.

If T and T.S are both feasible traces, then S is called a feasible extension of T. The set of all feasible extensions
of T is called the object’s behavior after T.

Two feasible traces are observationally equivalent iff the object’s behaviors after these traces are the same. In

TAM’97 — TAM.fm 6/73 June 19, 1997 3:02 pm

other words, an equivalence relation (denoted by “ ”) is defined on the set of all feasible traces, such that T1 T2 iff

T1 and T2 have the same sets of feasible extensions. This relation is called the observational equivalence relation.

Note that if we know the relation “ ”, then the description of the object’s behavior after a feasible trace T also
specifies the object’s behavior after each trace from the equivalence class of T. We make use of this observation in
trace specifications of modules.

2.2 A trace specification of a module

According to our basic assumption (cf. Section 2.1), all objects in a module are homogeneous and the state of each
object in a module is independent of the states of other objects in this module. We assume that in case of an event
concerning more than one object, state changes of these objects may be described independently. In this section we
focus on events affecting only one, generic, object of the module (state changes of more than one object are considered
in Section 2.4).

Since we are interested in software modules, it is reasonable to distinguish the following means of communica-
tion of the object with the outside world:

• a set of programs that can be used by objects from other modules to provide information to, and/or receive infor-
mation from the object — they are called access-programs,

• a vector of external variables that affect the object’s behavior — they are called input variables,

• a vector of variables whose values are computed by the object and can be observed externally — they are called
output variables.

Thus, the following events can affect an object:

• access-program invocations,

• changes of values of the input variables, called input variable events;

and the following outputs can be produced by an object:

• values returned by access-program invocations,

• values of output variables.

If two or more events arrive at the same time, then the external environment of the module arranges them into a se-
quence and delivers to the objects of the module one by one.

In TAM we describe objects from an external observer’s point of view, specifying which traces can be observed,
i.e., which are feasible for a given set of proper traces. Usually this is not a simple task. TAM provides a technique
which is based on the observation made at the end of the previous section. It consists in specifying a state machine
which has the same set of proper and feasible traces as the described object. We proceed in the following steps:

• We choose a subset, C, of feasible traces, which we call canonical traces. At least one element of C must belong
to each abstraction class of the observational equivalence relation. Canonical traces are states of the specified state
machine (abstract states of the object). We describe the object’s behavior only after traces from C.

• Since the initial state of the object is represented by the empty trace, either C must contain the empty trace, or we
have to specify which canonical trace is observationally equivalent to it (otherwise, we could not predict the ob-
ject’s reaction after the very first event). This canonical trace is the initial state of the specified state machine.

• We define the legality function: its domain is C × E and its values are strings enclosed in ‘%’ characters (called
legality tokens). This function specifies which events are legal after a given canonical trace. If legality(c, e) = %le-
gal% then for any o ∈ O and for any feasible trace T leading to the state c, the trace T.(e, o) is proper. Otherwise,

≡
o

≡
o

≡
o

TAM’97 — TAM.fm 7/73 June 19, 1997 3:02 pm

it is improper and the value of the legality function can bear some descriptive information why it is improper. We
will denote the set of pairs (c, e) for which legality(c, e) = %legal% by L.

• We define the output relation, out; it is a subset of the product L × O. This relation states which outputs can be
produced in response to events after a canonical trace — (TC, e, o) ∈ out iff the output o can be produced in re-

sponse to the event e after the canonical trace TC.

• We define the extension function, ef, which maps from out into the set of canonical traces. If ef(TC, e, o) = SC, then

we know that TC.(e, o) is observationally equivalent to SC and thus we may further assume that the propriety of

traces and the object’s behavior is described by SC. The extension function is the state transition function of the

specified state machine. It must be true that if TC.(e, o) ∈ C, then ef(TC, e, o) = TC.(e, o).

The extension function and the definition of the canonical trace equivalent to the empty trace allows us to reduce
each feasible trace to an observationally equivalent canonical trace (this is discussed in the next section). Using the
legality function we can decide which extensions of a feasible trace are proper. Using the output relation we can predict
outputs produced in response to events by the object being in a state represented by a canonical trace. Therefore, the
technique described above completely specifies the externally observable behavior of the object.

A trace specification of a module (often called in short a module) consists of a description of the generic object
from the module, and introduces:

• access-programs (cf. Section 5.3),

• input variable events (cf. Section 5.7),

• output variables (cf. Section 5.8),

• a predicate “canonical” and possible auxiliary functions (cf. Section 5.4),

• a legality function (cf. 5.6.4.1),

• an extension function (cf. Section 5.5),

• an output relation (cf. Section 5.5).

2.3 The specification equivalence

A trace specification defines explicitly the set of canonical traces, the legality function, the extension function, ef, and
the output relation, out. It also defines implicitly the propriety and feasibility of traces.

Let us introduce the reduction function, reduce, that maps the set of feasible traces onto the set of canonical trac-
es. We define it, together with the propriety (predicate proper) and feasibility (predicate feasible) of traces, by a mutual
induction (U is the canonical trace equivalent to the empty trace, or the empty trace, if it is canonical itself):

proper(_) ∧ proper(U)

feasible(_) ∧ feasible(U)

reduce(_) = U

proper(T.(e, o)) ⇔ feasible(T) ∧ (legality(reduce(T), e) = %legal%)

feasible(T.(e, o)) ⇔ proper(T.(e, o)) ∧ (reduce(T), e, o) ∈ out

reduce(T.(e, o)) = ef(reduce(T), e, o)

The reduction function defines an equivalence relation on feasible traces, denoted by “ ”:≡
s

TAM’97 — TAM.fm 8/73 June 19, 1997 3:02 pm

T1 T2 reduce(T1) = reduce(T2)

For each pair of feasible traces, T1 and T2, it is true that

T1 T2 ⇒ T1 T2

The predicate canonical defines unique representatives of equivalence classes of “ ” (otherwise, there would ex-
ist a canonical trace U such that reduce(U) ≠ U). We might expect that it also defines unique representatives of equiv-

alence classes of “ ”. Sometimes, however, “ ” may partition the set of feasible traces into smaller equivalence classes

than “ ” does. Thus, there may exist different canonical traces that are observationally equivalent.

Usually the above implication holds in both directions, i.e., the two relations on traces, “ ” and “ ”, are identical
(in such case they are called the trace equivalence relation).

Let us illustrate the possible differences between the two relations using a simple example — a stack of non-neg-
ative integers with the following access-programs:

PUSH(a) pushes a onto the top of the stack,

POP removes the top element from the stack,

TOP returns the value of the top element of the stack.

It seems natural to define canonical traces as finite sequences of PUSH(ai). Such sequences represent current con-

tents of the stack, which constitutes the only relevant information. It also seems natural to define PUSH to be always
legal, and to define POP and TOP to be legal for non-empty stacks. Both equivalence relations would be the same in
this case.

Let us now slightly modify our example and require that the TOP access-program returns the value taken modulo
256. The new specification may differ only in the description of the output relation where the value returned by TOP
is defined. Although the two traces PUSH(5) and PUSH(261) are canonical, they are observationally equivalent — the
only way to retrieve information from the stack is to call the program TOP which would return 5 in both cases. In other
words, if we do not change the definition of the predicate canonical in the specification of our modified stack, then the

two equivalence relations (“ ” and “ ”) are not identical anymore.

In this particular case we could easily change the second specification by modifying the canonical traces to be
sequences of PUSH(x), where 0 ≤ x ≤ 255, resulting in the two equivalence relations being the same. However, such
a modification might be not so straightforward and/or reasonable in the case of more complex examples.

2.4 Events affecting more than one object in a module

In Section 2.2 we have made the assumption, that one event may alter one object only. Here we show how to deal with
events affecting more than one object.

If an event affects more than one object, the outcome of this event may depend on the states of the affected ob-
jects. Thus traces representing those states should be a part of the event description — we add the names and traces of
the affected objects to the argument lists of access-program invocations.

Since a trace can contain names and states of more than one object, it is generally no longer possible to identify
the object under observation. We need a way to distinguish it from other objects. We replace the state and the name of
the observed object in all events with the asterisk symbol “∗”. Note that for the event ei from the trace (e1, o1).(en,

on), the state of the observed object is determined by the prefix (e1, o1).(ei-1, oi-1). Since all objects implemented

≡
s

=
df

≡
s

≡
o

≡
s

≡
o

≡
s

≡
o

≡
s

≡
o

≡
s

≡
o

TAM’97 — TAM.fm 9/73 June 19, 1997 3:02 pm

by the module are homogeneous, the actual name of the observed object is irrelevant — we assume that it is different
from all names of objects given explicitly. We call the observed object the subject of the trace.

All steps in the construction of the trace specification remain the same as described in Section 2.2.

2.5 Notational conventions

In the previous sections we defined traces to be finite sequences of pairs (e, o) composed of events e and outputs o. An
output o is a vector of output values. Each of these values depends either deterministically or non-deterministically on
the preceding events and outputs. From now on we will omit deterministic values since they can be deduced from the
preceding part of the trace. Non-deterministic values from o will be incorporated into the event description e.

TAM’97 — TAM.fm 10/73 June 19, 1997 3:02 pm

Chapter 3 Basic concepts

3.1 Syntax and semantics

Syntactical aspects of TAM are formally described with the help of the abstract and presentation syntax. The meaning
of each syntactical entity of the abstract syntax will be defined in the natural language.

3.1.1 Abstract syntax

The abstract syntax of trace specifications is presented in the standard way, e.g.

non_terminal ::= OperatorName1(arg1,1, ..., arg1,m)

| OperatorName2(arg2,1, ..., arg2,n)

| ...

where each argi,j is a non-terminal symbol. All operator names are different. The operator is present even if there is

only one production for a non-terminal symbol. The characters “|”, “[[”, “]]*”, and “]]+” have been adopted as meta-
symbols, as follows:

x | y means x or y (used to separate subsequent productions)

[[x]]* means zero or more occurrences of x (used to denote possibly empty lists of x)

[[x]]+ means one or more occurrences of x (used to denote non-empty lists of x)

The operators “[[]]+” and “[[]]*” are formally defined as follows:

• the expression

[[some_element]]*

is an abbreviation of

SomeElement0() | SomeElement2(some_element, some_element_list),

• the expression

[[some_element]]+

is an abbreviation of

SomeElement1(some_element) | SomeElement2(some_element, some_element_list)

Example

The production

trace_expr_list ::= [[trace_expr]]+

is equivalent to

trace_expr_list ::= TraceExpr1(trace_expr) | TraceExpr2(trace_expr, trace_expr_list)

TAM’97 — TAM.fm 11/73 June 19, 1997 3:02 pm

3.1.2 Presentation syntax

The presentation syntax, being a function of the abstract one, states how terms built in accordance with the abstract
syntax are translated to the form they appear in a trace specification. However, in trace specifications we use a notation
that cannot be described by an ordinary context-free grammar (i.e. tabular notation, indentations, justification of lines,
specific type/size of fonts). For this purpose we adopted a “shaded box” convention — if a production specifies some
graphical features, its right-hand side is written on a shaded background. In a very few cases we decided to desist from
the rigorous formality to gain readability and conciseness - such situations are, however, always explained later on in
the text (cf. e.g. the presentation syntax of the access-programs table in 5.3.2 and the corresponding comments in
5.3.5).

Usually, the mapping between the abstract syntax definition of a non-terminal symbol and the corresponding pre-
sentation syntax definition is straightforward (there is the same number of productions for the non-terminal symbol in
both cases, the order of productions does not change, and the non-terminal symbols on right-hand sides of correspond-
ing productions are the same). If, however, the mapping is not one-to-one and requires an explanation, then this is done
in a separate section entitled “Comments on the presentation syntax”.

Non-terminal symbols are written in Sans Serif; remaining symbols are terminal, including spaces and new-
lines. If the vertical bar, “|”, is needed as a terminal symbol, it must be surrounded by single quotes. The empty word
is denoted by “ε”.

We use the following meta-symbols in the presentation syntax:

x | y means x or y (used to separate subsequent productions)

[[x]]+(y) means x | x y [[x]]+(y) (used to denote non-empty lists of x separated by y)

[[x]]*(y) means ε | [[x]]+(y) (used to denote possibly empty lists of x separated by y)

Example

The following production:

parameters ::= [[type_parameter | [[var_parameter]]+(,) : type]]*(;)

defines a list (possibly empty, separated by semicolons) of two kinds of parameters: type parameters, and variable pa-
rameters, gathered on (non-empty, separated by commas) lists of variables of the same type.

3.1.3 Referenced non-terminal symbols

There are many inter-dependencies among sections describing the syntax — in a particular section we may refer to a
non-terminal symbol which is defined in another section. All such non-terminals are enumerated together with the
numbers of the sections containing the definitions of these symbols.

3.2 Basic non-terminal symbols

There are some commonly used, basic non-terminal symbols, for which we give no formal syntactical productions.

Their definition is as follows:

ident is an identifier, i.e., a sequence of letters, digits and underscore characters beginning with a letter or an un-
derscore, and having at least one letter. If it begins with one or more underscores, then the first character
different than underscore must be a letter. Upper- and lower-case letters are considered distinct characters.

index is a sequence of digits. The first one must not be zero.

string is a sequence of arbitrary characters different from newlines.

text is a sequence of arbitrary characters. In particular, it can contain newlines.

TAM’97 — TAM.fm 12/73 June 19, 1997 3:02 pm

token is a string enclosed in characters ‘%’ and not containing this character.

3.3 Scopes of identifiers

Identifiers are used to denote entities such as: types, variables, or access-programs. One of all occurrences of a
given identifier inside a specification is distinguished and it is called the introduction of the identifier; the other occur-
rences of the same identifier are called its uses. The introduction of an identifier is also called the introduction of the

entity denoted by it.

Each identifier (and the entity denoted by it) have a scope which is to be understood as the portion of the speci-
fication where this identifier (and the entity denoted by it) can be used. The scope is described for every syntactic entity
introducing an identifier. A specification can introduce the same identifier more than once provided that the scopes of
the identical identifiers are disjoint. A specification can also introduce identifiers introduced in other specifications (cf.
5.2.4).

If an identifier introduces an entity B inside the definition of an entity A and there are no other occurrences of
identifiers in A, then we may also say that the entity A introduces the entity B.

3.4 Trace sets and types

3.4.1 Abstract syntax

trace_set ::=

AllTraces(type) | CanTraces(type)

type ::=

Type(ident)

3.4.2 Presentation syntax

trace_set ::=

<<type>> | <type>

type ::=

ident

3.4.3 Referenced non-terminal symbols

3.4.4 Semantics

A type is a basic notion defined by a trace specification of a module (in short: specified by a module). Each type is
identified by the argument of the operator Type and has two sets of traces associated with it. The first one, described
by the operator AllTraces, is the set of all traces of the module which specifies the type being the argument of this
operator. The second one, described by the operator CanTraces, the set of canonical traces, is a subset of the first set,
and is defined by the predicate “canonical” (cf. Section 5.4). Canonical traces are also called reduced traces (cf. Sec-
tion 2.3). A trace belonging to either of the two sets associated with a type x is said to be of type x.

ident Section 3.2

TAM’97 — TAM.fm 13/73 June 19, 1997 3:02 pm

Canonical traces represent states (called also values) of a given type. Note, however, that a value of a trace ex-
pression does not have to be a canonical trace (cf. Section 4.5).

The type being specified by a given module is called domestic. All other types used within this module are called
foreign.

3.4.5 Predefined types

The four commonly used types: bool, char, int, and real, are known as predefined types. Their sets of values are as
follows:

bool is a set of boolean (logical) values,

char is a set of characters,

int is a set of integer numbers,

real is a set of real numbers.

Both, the canonical traces of the predefined types, and the conventional operations, can be written in standard notation.
Details about these types are to be found in Section 6.1.

TAM’97 — TAM.fm 14/73 June 19, 1997 3:02 pm

Chapter 4 Expressions

4.1 Auxiliary notions

4.1.1 Abstract syntax

constraint ::=

ConstraintNo() | ConstraintYes(log_expr)

qualifier ::=

QualNo() | QualYes(type)

4.1.2 Presentation syntax

constraint ::=

ε | (log_expr)

qualifier ::=

ε | type::

4.1.3 Referenced non-terminal symbols

4.1.4 Semantics

A constraint is always accompanied by an expression and a declaration of variables. The constraint is used to con-
strain the set of values that can be assigned to variables introduced by this declaration and used in the accompanying
expression. The argument of the operator ConstraintYes, log_expr, is a logical expression imposing restrictions on
the set to which this operator is applied. If no restrictions are intended, we can use operator ConstraintNo instead of
ConstraintYes(true). Note that in the expression accompanying the constraint we can use entities with limited do-
mains, e.g. auxiliary functions (cf. Section 4.3).

A qualifier is used to identify a module in which the qualified entity is defined. Qualified entities include access-
programs, input variable events, auxiliary functions, and the empty trace. If the operator QualNo is used, then the en-
tity is defined in the module being specified. Otherwise, the entity is defined in the module identified by argument type

of the operator QualYes, i.e., in the module in which the domestic type, c.f. Section 5.2, is equal to argument type of
the operator QualYes.

4.2 Variable declarations

4.2.1 Abstract syntax

simple_var_intro_list ::=

[[simple_var_intro]]*

ident Section 3.2

log_expr Section 4.9

TAM’97 — TAM.fm 15/73 June 19, 1997 3:02 pm

simple_var_intro ::=

SimpleVarIntro(ident)

name_var_intro ::=

NameVarIntro(ident)

var_declaration_list ::=

[[var_declaration]]+

var_declaration ::=

VarDeclaration(var_untyped_declaration_list, trace_set)

var_untyped_declaration_list ::=

[[var_untyped_declaration]]+

var_untyped_declaration ::=

UntypedSimpleVarDeclaration(simple_var_intro)

| UntypedIndexedVarDeclaration(indexed_var_intro)

indexed_var_intro ::=

IndexedVarIntro(ident, trace_expr_list, trace_expr_list)

4.2.2 Presentation syntax

simple_var_intro_list ::=

[[simple_var_intro]]*(,)

simple_var_intro ::=

ident

name_var_intro ::=

ident

var_declaration_list ::=

[[var_declaration]]+(;)

var_declaration ::=

var_untyped_declaration_list : trace_set

var_untyped_declaration_list ::=

[[var_untyped_declaration]]+(,)

var_untyped_declaration ::=

simple_var_intro | indexed_var_intro

TAM’97 — TAM.fm 16/73 June 19, 1997 3:02 pm

indexed_var_intro ::=

ident[trace_expr_list]..ident[trace_expr_list]

4.2.3 Referenced non-terminal symbols

4.2.4 Semantics

There are two kinds of variables: trace variables and name variables. The scope of variables is defined in the following
sections:

• 4.3.4 (declarations of auxiliary functions),

• 4.5.4 (declarations of input variables and of input variable events),

• 4.7.4.7 (iterations),

• 4.7.4.10 (where expressions),

• 4.9.4.5 (quantified expressions),

• 5.2.4.1 (parameters),

• 5.6.4.1 (legality functions),

• 5.6.4.2.2 and 5.6.4.2.1 (invocation sub-functions),

• 5.7.4 (input variable events),

• 5.8.4 (values of output variables).

4.2.4.1 Trace variables

Trace variables are used to represent traces. Each trace variable is of a certain type. Let x be the type with which the
second argument of the VarDeclaration operator, trace_set, is associated; trace variables introduced by the first ar-
gument of this operator, var_untyped_declaration_list, are of type x. A trace variable can be assigned either any
trace of type x (if trace_set is AllTraces(x)), or a canonical trace of type x (if trace_set is CanTraces(x)). The as-
signed trace is the value of this trace variable.

Trace variables are simple or indexed.

4.2.4.1.1 Simple variables

A simple variable is introduced by the argument ident of the SimpleVarIntro operator. In expressions we refer to its
value by this identifier.

4.2.4.1.2 Indexed variables

An indexed variable is introduced by the argument ident of the IndexedVarIntro operator. The other two arguments
of this operator must be lists of the same length. The type of each trace_expr (cf. 4.7.4.1) on these lists must be int.

An indexed_var_intro of the form IndexedVarIntro(v, p, q) is defined iff the value of each trace_expr on the
lists p and q is defined and canonical.

ident Section 3.2

trace_expr_list Section 4.7

trace_set Section 3.4

TAM’97 — TAM.fm 17/73 June 19, 1997 3:02 pm

In trace expressions we refer to the value of an indexed variable by its identifier and a list of indexing trace ex-
pressions (cf. 4.7.4.6).

Example

Declaration n: <int>; a[1]...a[n]: <int> introduces an integer n and a sequence of integers, a, of length n.

4.2.4.2 Name variables

Name variables are used to represent names of objects (cf. Section 2.4). Name variables are introduced by the argu-
ment ident of the NameVarIntro operator. The sole operation available on names is the equality test.

4.2.5 Comments on the presentation syntax

Both identifiers ident used on the right-hand side of indexed_var_intro are the same and they are equal to the first
argument of the IndexedVarIntro operator in the abstract syntax.

4.3 Auxiliary function definitions

4.3.1 Abstract syntax

fct_declaration ::=

FunctionDeclaration(ident, fct_sign, simple_var_intro_list, constraint, trace_expr)

fct_sign ::=

FunctionSignature(trace_set_list, trace_set)

trace_set_list ::=

[[trace_set]]*

4.3.2 Presentation syntax

fct_declaration ::=

fct_sign ::=

trace_set_list → trace_set

trace_set_list ::=

[[trace_set]]*(×)

4.3.3 Referenced non-terminal symbols

ident : fct_sign

ident(simple_var_intro_list) constraint trace_expr

constraint Section 4.1

ident Section 3.2

simple_var_intro_list Section 4.2

=
df

TAM’97 — TAM.fm 18/73 June 19, 1997 3:02 pm

4.3.4 Semantics

Each fct_declaration defines an auxiliary function. The meaning of the arguments of the operator FunctionDeclara-

tion is as follows:

1. ident is the identifier of the auxiliary function being introduced.

• Its scope is the whole specification.

2. fct_sign is the signature of the function.

• The domain of the function is the Cartesian product of sets, possibly restricted by constraint (cf. p.4 below). Each
of these sets is trace_set determined by the first argument of the FunctionSignature operator, i.e., by
trace_set_list.

• The range of the function is the set trace_set being the second argument of the FunctionSignature operator.

3. simple_var_intro_list is the list of formal arguments of the function.

• It must be of the same length as the first argument of the FunctionSignature operator, i.e., trace_set_list.

• Each ident inside the simple_var_intro_list introduces a new simple variable whose scope is the forth and fifth
argument of the FunctionDeclaration operator, i.e., constraint and trace_expr.

• The type of the i-th variable on the simple_var_intro_list is the type with which the i-th trace_set in the
trace_set_list is associated.

4. constraint (cf. Section 4.1) is used to finally define the function’s domain. If the constraint is of the form Con-

straintYes(x) then the logical expression x must be defined for any tuple belonging to the Cartesian product de-
fined by trace_set_list.

5. trace_expr is a trace expression defining the value of the function.

• The type of the trace_expr must be the type of the range of the function.

• The value of the function is obtained by evaluation of this expression after replacing in it all formal arguments (list-
ed in simple_var_intro_list) by the actual ones. Details are presented in 4.7.4.9. If the logical expression defined
by constraint evaluates to true, then the value of the trace_expr must be defined and belong to the range of this
function.

4.3.5 Comments on the presentation syntax

Both identifiers ident used on the right-hand side of fct_declaration are the same and they are equal to the first argu-
ment of the FunctionDeclaration operator in the abstract syntax.

4.3.6 Built-in auxiliary functions

The following functions are built-in in every specification:

feasible takes one argument which must be a trace. The value of feasible is of type bool, and is equal to true iff the
value of the argument is a feasible trace (cf. Section 2.1). Otherwise the value of feasible is false.

count takes two arguments. The first one must be a trace, while the second must be an identifier of an access-pro-
gram, or of an input variable event, from the same module as the trace. The value of count is of type int. If
the second argument denotes an access-program then the value of count is equal to the number of invocations
of this access-program in the trace. If the second argument denotes an input variable event then the value of
count is equal to the number of input variable events identified by this input variable event in the trace.

trace_expr Section 4.7

trace_set Section 3.4

TAM’97 — TAM.fm 19/73 June 19, 1997 3:02 pm

length takes one argument which must be a trace. The value of length is of type int and is equal to the total number
of invocations and input variable events in the trace.

reduce takes one argument which must be a feasible trace. The value of reduce is the reduced trace, i.e., the canonical
trace which is specification equivalent (cf. Section 2.3) to the argument.

Note that the value an application of feasible or reduce depends on the definitions of the extension function and
the output relation for the events appearing in the argument of this application.

4.3.7 Specific auxiliary functions

Note that the predicate “canonical” can be treated as an auxiliary function (cf. 5.4.4).

4.4 Access-program declarations

4.4.1 Abstract syntax

program_declaration_list ::=

[[program_declaration]]+

program_declaration ::=

ProgramDeclaration(ident, arg_description_list, result_type)

arg_description_list ::=

[[arg_description]]*

arg_description ::=

ArgDescription(type, arg_mode)

arg_mode ::=

V() | O() | R() | VO() | VR()

result_type ::=

ResultNo() | ResultYes(type) | ResultYesR(type)

4.4.2 Presentation syntax

program_declaration_list ::=

program_declaration ::=

arg_description_list ::=

program_declaration
program_declaration

program_declaration_list

ident arg_description_list result_type

ε arg_description arg_description_list

TAM’97 — TAM.fm 20/73 June 19, 1997 3:02 pm

arg_description ::=

type : arg_mode

arg_mode ::=

V | O | R | VO | VR

result_type ::=

ε | type | type : R

4.4.3 Referenced non-terminal symbols

4.4.4 Semantics

Each program_declaration defines an access-program. The meaning of the arguments of the operator Program-

Declaration is as follows:

1. ident is the identifier of the access-program being introduced.

• Its scope is the whole specification.

2. arg_description_list is the description of the arguments of this program.

• The type and input/output mode of each argument are described by ArgDescription(type, arg_mode).

• The input/output mode, arg_mode, is characterized by one of the five operators.

(a) V — a value must be provided in the invocation of this access-program. The argument labeled by V is called
an input argument. The outcome of this invocation (returned values and state changes) may depend on the
value of this argument.

(b) O — a name of an object must be provided in the invocation of this access-program. The argument labeled
by O is called a deterministic output argument. The invocation may assign a new value to the object identified
by this argument. The new value is obtained deterministically. The previous value of the object identified by
this argument cannot be used. The outcome of this invocation may depend on the actual name used.

(c) R — a name of an object must be provided in the invocation of this access-program. The argument labeled
by R is called a non-deterministic output argument. The semantics of the R operator is like the one of O with
one difference: the new value of the object being identified is obtained non-deterministically. The type of
such an argument cannot be domestic.

(d) VO — a value and a name of an object must be provided in the invocation of this access-program. The argu-
ment labeled by VO is called a deterministic input-output argument. The semantics of the VO operator is the
combination of the semantics of V and O (and hence the previous value of the object can be used to obtain
its new value).

(e) VR — a value and a name of an object must be provided in the invocation of this access-program. The argu-
ment labeled by VR is called a non-deterministic input-output argument. The semantics of the VR operator
is the combination of the semantics of V and R.

3. result_type is the description of the way this program will be used.

• If the operator ResultNo is used, then the access-program is procedure-like.

• If either the operator ResultYes or the operator ResultYesR is used, then the access-program is function-like and

ident Section 3.2

type Section 3.4

TAM’97 — TAM.fm 21/73 June 19, 1997 3:02 pm

their argument, type, describes the type of values returned by invocations of this program. The returned value is
obtained either deterministically (ResultYes) or non-deterministically (ResultYesR). In the latter case, the type
of values returned cannot be domestic.

4.4.5 Comments on the presentation syntax

In the productions program_declaration and arg_description_list the tabular notation is used. These productions
are used by program_declaration_list to describe rows in the access-programs table and related notational conven-
tions are explained in Section 5.3. Below we give only some of them:

• program_declaration_list is a sequence of rows in the access-programs table;

• program_declaration consists of two cells (ident, result_type) and a sequence of cells between them, each being
arg_description;

Example

Basic operations on stacks of integers can be declared in the following way:

4.5 Input and output variable declarations

4.5.1 Abstract syntax

input_var_declaration_list ::=

[[input_var_declaration]]+

input_var_declaration ::=

InputVarDeclaration(simple_var_intro, type, input_var_condition_list)

input_var_condition_list ::=

[[input_var_condition]]+

input_var_condition ::=

InputVarCondition(condition, ident)

condition::=

AnyChange()

| BecomesTrue(log_expr)

| BecomesFalse(log_expr)

output_var_declaration_list ::=

[[output_var_declaration]]+

output_var_declaration ::=

OutputVarDeclaration(ident, type)

PUSH stack:VO int:V

POP stack:VO int:V

TOP stack:V int

TAM’97 — TAM.fm 22/73 June 19, 1997 3:02 pm

4.5.2 Presentation syntax

input_var_declaration_list ::=

input_var_declaration ::=

input_var_condition_list ::=

input_var_condition ::=

condition ::=

AnyChange

| @T(log_expr)

| @F(log_expr)

output_var_declaration_list ::=

output_var_declaration ::=

4.5.3 Referenced non-terminal symbols

4.5.4 Semantics

Each input_var_declaration, InputVarDeclaration(simple_var_intro, type, input_var_condition_list), introduc-
es input variable events related to an external object observed by the module. Introduced events correspond to different

input_var_declaration
input_var_declaration

input_var_declaration_list

simple_var_intro type input_var_condition_list

input_var_condition
input_var_condition

input_var_condition_list

condition ident

output_var_declaration
output_var_declaration

output_var_declaration_list

ident type

ident Section 3.2

log_expr Section 4.9

simple_var_intro Section 4.2

type Section 3.4

TAM’97 — TAM.fm 23/73 June 19, 1997 3:02 pm

elements of the input_var_condition_list, one event for every input_var_condition. The meaning of the arguments
of the operator InputVarDeclaration is as follows:

1. simple_var_intro introduces a simple variable which denotes an external object, and is called an input variable.
The scope of this variable is the third argument of the operator InputVarDeclaration, input_var_condition_list.

2. type is the type of this input variable. This type cannot be domestic.

3. input_var_condition_list introduces all input variable events concerning this input variable. Each
input_var_condition defines a condition of interest for this variable and the identifier of the input variable event.
The scope of each identifier is the whole specification. The input_var_condition is interpreted as follows:

• If it is of the form AnyChange(), then the input variable is called an unconditional input variable, and the corre-
sponding input variable event informs the module about any change of value of this input variable.

• If it is of the form BecomesTrue(e), then the input variable is called a conditional input variable, and the corre-
sponding input variable event informs the module about a change of value of this input variable such that for the
new value the expression e becomes true.

• If it is of the form BecomesFalse(e), then the input variable is called a conditional input variable, and the corre-
sponding input variable event informs the module about a change of value of this input variable such that for the
new value the expression e becomes false.

If the input_var_condition is of the form AnyChange(), then it has to be the only one concerning the given
input variable. If there is no input_var_condition of the form AnyChange(), then let for each i=1..n (n is the length
of the input_var_condition_list) pi = ei if the i-th input_var_condition is equal to BecomesTrue(ei), and pi = ¬ei

if it is equal to BecomesFalse(ei). All the conditions pi have to be mutually exclusive. This restriction guarantees that

there is no pair of events concerning the same input variable that can occur at the same time.

Each output_var_declaration introduces an output variable. The ident is its name, the type is its type, and its
scope is empty, i.e., it cannot be used inside the same specification.

There is one copy of each input and output variable for each object of the module. The initial values of input
variables are determined by the external environment of the module and are not defined in the specification.

Example

An output variable representing measured temperature can be declared in the following way:

The table below introduces two input variable events: FREEZING and WARM, which take place (respectively)

when the input variable, temperature, falls below 0.0 or raises above 20.0.

4.6 The set of traces

In this section we define the semantic domain of traces.The set of traces of type x, denoted by <<x>>, depends on the
declarations of access-programs and input variable events in the specification of type x and is a subset of the language
generated by the following abstract grammar.

trace ::=

[[event_description]]*

temperature real

temperature real
@T(temperature<0.0) FREEZING

@T(temperature>20.0) WARM

TAM’97 — TAM.fm 24/73 June 19, 1997 3:02 pm

event_description ::=

InputVarEvent(ident, trace) | ProgramEvent(ident, arg_list) | ProgramEventR(ident, arg_list, trace)

arg_list ::=

[[arg]]*

arg ::=

ArgAst()

| ArgV(trace)

| ArgN(index)

| ArgNV(index, trace)

| ArgNR(index, trace)

| ArgNVR(index, trace, trace)

A trace of type x is a sequence of event descriptions. Each of them (depending on its form) must satisfy the fol-
lowing conditions:

InputVarEvent(e, t)

• e must be the name of an input variable event declared in the specification of type x;

• t must be a trace of the type of the input variable to which event e corresponds;

ProgramEvent(p, (aj)j=1,2,...,n) or ProgramEventR(p, (aj)j=1,2,...,n, r)

• p must be the name of an access-program declared in the specification of type x;

• if the operator is ProgramEvent, then program p must be either procedure-like or function-like with the returned
value obtained deterministically;

• if the operator is ProgramEventR, then program p must be function-like with the returned value obtained non-
deterministically and r must be a trace of the type of the value returned by p.

• n must be equal to the number of arguments of access-program p;

• for each j =1,2,...,n argument aj must be of the following form depending on the mode and the type (whether it is

x or not) of the j-th argument of access-program p:

Mode Type x Type different from x

V() ArgV(vj) ArgV(vj)

O() ArgAst()
or

ArgN(ij)
ArgN(ij)

R() impossible ArgNR(ij, oj)

VO() ArgAst()
or

ArgNV(ij, vj)
ArgNV(ij, vj)

VR() impossible ArgNVR(ij, vj, oj)

TAM’97 — TAM.fm 25/73 June 19, 1997 3:02 pm

• for each j=1,2,...,n

- if vj exists, then it must be a trace of the type of j-th argument of program p.

- if oj exists, then it must be a trace of the type of j-th argument of program p.

• either at least one aj must be ActAst(), or p is function-like and returns values of type x (this way the subject of the

trace is indicated).

• if for certain k, l equality ik = il holds, then

- types of k-th and l-th argument must be the same, and

- if both vk and vl exist, then equality vk = vl must hold, and

- if both ok and ol exist, then equality ok = ol must hold

(if the same object is passed by different arguments, it must be of the same type and its input and output values
passed by these arguments must be consistent).

4.6.1 Referenced non-terminal symbols

4.7 Trace expressions

4.7.1 Abstract syntax

trace_expr ::=

TraceEmpty(qualifier)

| TraceConcatenation(trace_expr, trace_expr)

| TraceInvocation(invocation)

| TraceVarEvent(event_constructor)

| TraceVar(var_name)

| TraceIteration(trace_expr, simple_var_intro, trace_expr, trace_expr)

| TraceBracketing(trace_expr)

| TraceApplication(qualifier, ident, trace_expr_list)

| TraceWhere(trace_expr, var_declaration_list, constraint, log_expr)

| TraceTable(trace_entry_list)

| TraceLogExpr(log_expr)

trace_entry_list ::=

[[trace_entry]]+

trace_entry ::=

TraceEntry(log_expr, trace_expr)

var_name ::=

ident Section 3.2

index Section 3.2

TAM’97 — TAM.fm 26/73 June 19, 1997 3:02 pm

VarName(ident) | VarNameIndexed(ident, trace_expr_list)

trace_expr_list ::=

[[trace_expr]]+

event_constructor ::=

Event(qualifier, ident, trace_expr)

TAM’97 — TAM.fm 27/73 June 19, 1997 3:02 pm

4.7.2 Presentation syntax

trace_expr ::=

qualifier _

| trace_expr . trace_expr

| invocation

| event_constructor

| var_name

| [trace_expr]

| (trace_expr)

| qualifier ident(trace_expr_list)

| trace_expr where var_declaration_list constraint [log_expr]

| log_expr

trace_entry_list ::=

trace_entry ::=

var_name ::=

ident | ident[trace_expr_list]

trace_expr_list ::=

[[trace_expr]]+(,)

event_constructor ::=

qualifier ident(*, trace_expr)

Condition Value

trace_entry_list

trace_entry
trace_entry

trace_entry_list

log_expr trace_expr

trace_expr

ident trace_expr=

TAM’97 — TAM.fm 28/73 June 19, 1997 3:02 pm

4.7.3 Referenced non-terminal symbols

4.7.4 Semantics

4.7.4.1 Type and value of trace expressions

A trace expression is one of the following expressions (cf. the right-hand sides of the production of trace_expr): the
empty trace, a concatenation, an invocation, an input variable event constructor, a variable, an iteration, a bracketing,
an auxiliary function application, a “where” expression, a trace table or a logical expression.

Each trace expression is of a certain type. This type is also called the type of the trace expression. For a given
assignment of variables each trace expression is either defined or undefined. A defined trace expression can be evalu-
ated to a trace of the same type as this expression (cf. Section 4.6); we also say that this trace is the value of the trace
expression. Note that this value does not have to be a canonical trace. An undefined trace expression has no value.

4.7.4.2 Empty trace

An expression described by TraceEmpty(qualifier) allows constructing empty traces. It is always defined and evalu-
ates to the empty trace (i.e. the empty sequence of event_description) of the type identified by the qualifier (cf. Sec-
tion 4.1).

4.7.4.3 Concatenation

An expression described by TraceConcatenation(trace_expr, trace_expr), called a concatenation, allows compos-
ing longer traces from shorter ones. Both arguments must be of the same type.

The type of the expression is the type of the arguments. The expression is defined iff both arguments are defined.
Let T1 be the value of the first argument of TraceConcatenation and T2 be the value of the second one. The expres-

sion evaluates to a sequence of event_description being the concatenation of T1 and T2.

4.7.4.4 Invocation

An expression described by TraceInvocation(invocation), called an invocation, allows either:

• constructing one-element traces, consisting of single invocations of access-programs with possible returned values,
or

• application of the output relation or the extension function.

All details about invocations are presented in Section 4.8.

constraint Section 4.1

ident Section 3.2

invocation Section 4.8

log_expr Section 4.9

qualifier Section 4.1

simple_var_intro Section 4.2

var_declaration_list Section 4.2

TAM’97 — TAM.fm 29/73 June 19, 1997 3:02 pm

4.7.4.5 Input variable event constructor

An expression described by TraceVarEvent(event_constructor) allows constructing one-element traces consisting
of input variable events.

Input variable event constructor has a form Event(qualifier, ident, trace_expr). The first two arguments iden-
tify an input variable event. It has to be defined by InputVarCondition(condition, ident) introduced as one of ele-
ments of input_var_condition_list being the third argument of InputVarDeclaration(simple_var_intro, type,

input_var_condition_list) in a module identified by qualifier, c.f. Section 4.5. The third argument, trace_expr, cor-
responds to the value of the input variable related to this event and itroduced by simple_var_intro. This trace_expr

must be of the same type as the variable.

The type of an input variable event constructor is the type specified by the module where this event is declared.

The input event constructor is defined if the trace_expr is defined and the operator of the corresponding condi-

tion is:

• AnyChange, or

• BecomesTrue and the value of the trace_expr substituted into the log_expr argument of the operator makes this
expression true, or

• BecomesFalse and the value of the trace_expr substituted into the log_expr argument of the operator makes
this expression false.

The value of the input variable event constructor is a single-element trace consisting of InputVarEvent(ident,

trace) where ident is the same as the second argument of Event and trace is the value of the trace_expr.

4.7.4.6 Variable

An expression described by TraceVar(var_name), called a variable, allows a usage of previously declared variables
(cf. Section 4.2) in trace expressions. It is discussed in two steps, depending on the right-hand side of the production
describing the argument var_name.

1. var_name is VarName(ident).

The argument ident must be the identifier of a simple variable (cf. Section 4.2) introduced by SimpleVarIntro(ident).
The expression described by the operator VarName is always defined, its type is the same as the type of this variable,
and evaluates to the value of the variable.

2. var_name is VarNameIndexed(ident, trace_expr_list).

The argument ident must be the identifier of an indexed variable (cf. Section 4.2) introduced by indexed_var_intro,
i.e., IndexedVarIntro(ident, trace_expr_list, trace_expr_list). The expressions in the list argument of VarNameIn-

dexed must be of type int and the list argument must be of the same length as the lists in the declaration of the variable.

• The indexed variable described by VarNameIndexed is defined iff

- the indexed_var_intro is defined,

- each trace expression in the trace_expr_list of the VarNameIndexed operator is defined, and

- if the trace expressions in the declaration of the variable evaluate to integers p1, p2, ..., pn (the first list) and to

integers q1, q2, ..., qn (the second one), and the trace expressions in the list argument of VarNameIndexed eval-

uate to integers k1, k2, ..., kn, then the logical expression pi ≤ ki ≤ qi holds for each i=1,2,...,n.

• The expression described by VarNameIndexed is of the same type as the type of this variable, and evaluates to
the value to which v[k1, k2, ..., kn] refers, where v is the identifier of this variable.

TAM’97 — TAM.fm 30/73 June 19, 1997 3:02 pm

4.7.4.7 Iteration

An expression described by TraceIteration(trace_expr, simple_var_intro, trace_expr, trace_expr), called an it-

eration, allows to write a concatenation of a number of trace expressions in a concise way. The last two arguments
must be of type int. The argument simple_var_intro introduces a variable whose scope is the first argument, and
whose type is int. The type of an iteration is the same as the type of the first argument.

• Let TraceIteration(trace_expr, simple_var_intro, trace_expr, trace_expr) be denoted by TraceIteration(e, id,
p, q), where e is the first trace_expr, id is the ident introduced in simple_var_intro, and p and q are integers to
which the last two expressions trace_expr evaluate.

• The iteration is defined iff:

- the last two arguments of the operator TraceIteration are defined, their values are canonical, and

- for any value r such that p ≤ r ≤ q the value of the expression e[id ← r] is defined, where e[id ← r] is the expression
e in which all occurrences of trace expressions of the form TraceVar(VarName(id)) are simultaneously replaced
with r.

• The value of the iteration is as follows:

- If p > q holds, then the value of the iteration is equal to the empty trace.

- If p ≤ q holds, then the value of the iteration is equal to the concatenation of the values of the following two ex-
pressions:

e[id ← p], and TraceIteration(e, id, p+1, q)

Example

The expression [PUSH(*, i)]] denotes PUSH(*, 1).PUSH(*, 2).PUSH(*, 3).

4.7.4.8 Bracketing

An expression described by TraceBracketing(trace_expr), called a bracketing, allows a usage of parentheses within
trace expressions as it is known in standard mathematics. Its type is the type of its argument. It is defined iff its argu-
ment is defined. Its value is the value of the argument.

4.7.4.9 Application

An expression described by TraceApplication(qualifier, ident, trace_expr_list), called an application, allows a us-
age of auxiliary functions (cf. Section 4.3) within trace expressions. The argument ident must be the identifier of an
auxiliary function declared by FunctionDeclaration(ident, fct_sign, simple_var_intro_list, constraint,

trace_expr) (cf. 4.3.1) in the module identified by qualifier. The trace_expr_list must be of the same length as the
list of formal arguments, simple_var_intro_list, and the type of each trace expression must be the same as the type of
the corresponding formal argument.

The type of the application is the type of the range of the auxiliary function.

Let f be the identifier of the auxiliary function under consideration, id1, id2,..., idn be the identifiers introduced in

the third argument of FunctionDeclaration operator, simple_var_intro_list, and e be the last argument of the same
operator. Let e1, e2,..., en denote trace expressions forming the trace_expr_list of the TraceApplication operator, and

ti be the value of ei (if defined) for i=1,2,...,n. The application is defined iff for i=1,2,...,n each ei is defined, and the

tuple (t1, t2,..., tn) is a member of the domain of f. The value of the application is the value of the expression e[id1 ←
t1, id2 ← t2, ..., idn ← tn]. The traces t1, t2,..., tn are called actual arguments of the application.

4.7.4.10 “where” expression

An expression described by TraceWhere(trace_expr, var_declaration_list, constraint, log_expr), called a where

3

i 1=

TAM’97 — TAM.fm 31/73 June 19, 1997 3:02 pm

expression, allows formulating specific conditions within trace expressions, constraining values of selected variables.

Let a where expression be denoted by where(t, d, c, l), where t stands for trace_expr, d stands for
var_declaration_list, c is the argument of the operator ConstraintYes, if constraint has this form, or true if con-

straint is ConstraintNo(), and l stands for log_expr.

Let us assume the list d in a where expression, where(t, d, c, l), contains only the declaration of a single variable.

• The scope of the variable introduced in d is t, c, and l.

• The type of the where expression is the type of t.

• The value of the where expression is defined iff:

- the value of each trace_expr in d is defined,

- for each assignment to the variable in d, the value of c is defined,

- for all the assignments that make c hold, the value of l is defined,

- among all the assignments to the variable in d, there is exactly one such that l is true, and

- for this assignment the value of t is defined.

• The value of the where expression is the value of t when the variable declared by d is assigned a value such that c

and l are true.

If list d contains the declaration of more than one variable, this expression is an abbreviation of the expression Trace-

Where(new_t, new_d, ConstraintNo(), UniquelyExists(d, c, And(l, EqualTraces(t, new_t)))) where new_d is a
var_declaration_list containing only the declaration of a new simple variable, v, being of the same type as t, and new_t

is a trace_expr built of this variable. In terms of the presentation syntax, this means that the expression “t where d (
c) [l]” is an abbreviation of “v where v: <<type_of_t>> [∃! d (c) [l ∧ v = t]]”.

Example

The expression “B where B, E: <stack> [T = B.E ∧ length(E) = 4]” denotes the value of the stack obtained from T

by removing the top 4 elements (cf. Appendix D).

4.7.4.11 Trace table

An expression described by TraceTable(trace_entry_list), called a trace table, allows a usage of a tabular notation
within trace expressions. Each element of trace_entry_list, described by TraceEntry(log_expr, trace_expr), repre-
sents a row in a two-column table.

Let the elements of trace_entry_list be denoted (li, ei) for i=1,2,...,n. Types of all e1,e2,...,en must be the same.

• The type of the trace table is the same as the type of expressions ei.

• A trace table is defined iff:

- l1, l2,..., ln are defined, and

- there is exactly one i such that 1 ≤ i ≤ n, li is true, and

- for this value of i, the expression ei is defined.

• The trace table evaluates to the value of expression ei, where li is the unique logical expression which holds.

If the log_expr of a trace_entry starts with the quantifier ∃!, the scope of variables bound by this quantifier is
extended by trace_expr of this trace_entry. During the evaluation, each variable is assigned the unique value that
makes both log_exprs of the log_expr of the trace_entry hold.

TAM’97 — TAM.fm 32/73 June 19, 1997 3:02 pm

4.7.4.12 Logical expression as a trace expression

An expression described by TraceLogExpr(log_expr), called a trace-logical expression, allows an interpretation of
logical expressions as traces. Logical expressions as such are discussed in Section 4.9. The expression TraceLogEx-

pr(log_expr) is defined iff its argument is defined. The type of the expression is bool (cf. 3.4.5 and Section 6.1), and
the value is a trace representing the logical value “true” or “false”, depending on the value of the argument log_expr

(cf. Section 4.9).

4.8 Invocation constructors and arrow expressions

4.8.1 Abstract syntax

invocation ::=

Invocation(qualifier, ident, act_arg_list)

| InvocationR(qualifier, ident, act_arg_list, trace_expr)

| InvocationArr(qualifier, ident, act_arg_list)

act_arg_list ::=

[[act_arg]]*

act_arg ::=

ActAst()

| ActV(trace_expr)

| ActN(index)

| ActNV(index, trace_expr)

| ActNArr(index)

| ActNR(index, trace_expr)

| ActNVArr(index, trace_expr)

| ActNVR(index, trace_expr, trace_expr)

4.8.2 Presentation syntax

invocation ::=

qualifier ident(act_arg_list)

| qualifier ident(act_arg_list)➘ trace_expr

| qualifier ident(act_arg_list)➘

act_arg_list ::=

[[act_arg]]*(,)

act_arg ::=

*

| trace_expr

| * index

| (* index, trace_expr)

TAM’97 — TAM.fm 33/73 June 19, 1997 3:02 pm

| * index ➘

| * index ➘ trace_expr

| (* index, trace_expr) ➘

| (* index, trace_expr) ➘ trace_expr

4.8.3 Referenced non-terminal symbols

4.8.4 Semantics

An invocation has a form of either an invocation constructor or an arrow expression. We can distinguish them
in the following way:

• if the invocation operator is InvocationArr, or one of the argument operators is ActNArr or ActNVArr then the
invocation is an arrow expression,

• otherwise, it is an invocation constructor.

Both forms differ in their evaluation (cf. 4.8.4.3 and 4.8.4.4). The two forms, however, share a number of common
features discussed below.

The first two arguments of each of the operators Invocation, InvocationR, or InvocationArr, i.e., qualifier and
ident, identify an access-program. The third one is a list of actual arguments of the invocation of this access-program,
act_arg_list. This list must be of the same length as arg_description_list of the access-program (cf. Section 4.4).

An invocation, besides its input values and names of objects, describes also its non-deterministic output values
(the last argument of operators ActNR, ActNVR, and InvocationR).

If an actual argument contains trace_expr, then this expression must be of the same type as the corresponding
argument of the program.

4.8.4.1 Actual argument form

Depending on its input/output mode, arg_mode (cf. Section 4.4), each actual argument in act_arg_list must be
of the following form:

ident Section 3.2

index Section 3.2

qualifier Section 4.1

trace_expr Section 4.7

arg_mode act_arg interpretation

V() ActV(trace_expr) value “before”

O()

ActAst() name of the subject of the trace

ActN(index) name of an object not being the subject

ActNArr(index) name of an object not being the subject (cf. 4.8.4.4)

TAM’97 — TAM.fm 34/73 June 19, 1997 3:02 pm

4.8.4.2 Wild-card symbols

Wild-card symbols are mostly used to simplify the syntax of trace expressions and to express the fact that the values
associated with different objects can be equal.

An index is used to denote a name of an object in situations when the actual name is not important. The behavior
of an object after an invocation should not depend on the names of objects passed as arguments. Otherwise, objects in
a module may not be homogeneous (cf. Chapter 2). However, the behavior of an object can depend on the equalities
of object names, i.e., on the fact that the same object is passed in more than one argument. For this reason, the actual
names used need not occur in the trace. We replace them with indices in places where such names would occur (the
argument mode O(), or R()). If the indices i and j are used to name objects of different types, then i and j must be dif-
ferent. An index must not be used to denote the name of the subject of the trace.

In the case of the subject, a different wild-card symbol is used. The expression ActAst() denotes either the name
or the name and value, of this object. This applies to the argument mode O() or, respectively, VO(). Note that in the
latter case, the value represents the trace consisting of all preceding invocations. Note also that no wild-card symbol
may be used in the case of actual argument with the modes V(), R() or VR().

4.8.4.3 Invocation constructors

An invocation constructor is the most straightforward way of constructing one-element traces and has the following
form:

Invocation(qualifier, ident, act_arg_list)

or

InvocationR(qualifier, ident, act_arg_list, trace_expr)

The latter must be used, if the program is function-like and returns a value non-deterministically. In this case the last
argument, trace_expr, stands for this value.

Either at least one actual argument is of the form ActAst(), or the program is function-like and returns values of
the type specified by the module introducing the program (this corresponds to the subject of the trace). If an argument
is of the form ActAst(), then the type of this argument is of the type specified by the module introducing the program.

• The type of an invocation constructor is the type specified by the module where the access-program is declared.

• The invocation constructor is defined iff:

- all trace expressions, trace_expr, in act_arg_list are defined,

R() ActNR(index, trace_expr) name and value “after” of an object not being the
subject

VO()

ActAst() name and value “before”(determined by the con-
text) of the subject

ActNV(index, trace_expr) name and value“before” of an object not being the
subject

ActNVArr(index, trace_expr) name and value“before” of an object not being the
subject (cf. 4.8.4.4)

VR() ActNVR(index, trace_expr, trace_expr) name, value “before” and value “after” of an object
not being the subject

arg_mode act_arg interpretation

TAM’97 — TAM.fm 35/73 June 19, 1997 3:02 pm

- the last argument of the InvocationR operator is defined,

- if the same object is passed by different arguments, they are of the same type, and their input and output values
are respectively equal.

• The value of the invocation is a trace consisting of a single event_description obtained from this invocation in
the following way:

- if the invocation constructor is Invocation(qualifier, ident, act_arg_list), then the event_description is Pro-

gramEvent(ident, arg_list),

- if the invocation constructor is InvocationR(qualifier, ident, act_arg_list, trace_expr), then the
event_description is ProgramEventR(ident, arg_list, trace), where trace is the value of the trace_expr,

- all arguments on the arg_list are obtained from the act_arg_list by evaluation of each trace_expr, and the fol-

lowing replacement of operators:

Example

The following invocation constructor JOIN(*, (*1, U)) denotes the invocation of access-program JOIN on two

different objects, first of them being the subject.

4.8.4.4 Arrow expressions

Arrow expressions are used in situations where we are interested in the output value of a deterministic argument, or in
the value returned by a function-like access-program, i.e., the extension function or the output relation has to be ap-
plied. The operators ActNArr and ActNVArr are used to denote the argument of concern, and the operator Invocation-

Arr is used to denote the value returned by a function-like access-program. In both situations there is no subject, and
hence none of the argument operators can be ActAst.

If the invocation operator is InvocationArr, the program identified by qualifier and ident must be function-like
and no argument operator can be ActNArr or ActNVArr. If a different operator is used then there must be exactly one
argument with the operator ActNArr or ActNVArr (if the operator is different from InvocationArr and there is no
act_arg with operator ActNArr and ActNVArr, then this invocation is an invocation constructor) and if the operator
is InvocationR, then the program must be function-like and return values non-deterministically.

The value of the arrow expression is defined iff:

- each trace_expr inside the invocation is defined and evaluates to a canonical trace,

- all non-deterministic output values are possible with respect to the output relation (cf. Section 5.6),

- if the same object is passed by different arguments, they are of the same type, and their input and output values
are respectively equal,

- the value of the legality function (cf. 5.6.4.1) for the invocation where each trace_expr is replaced with its value,

operator of act_arg operator of arg

ActAst ArgAst

ActV ArgV

ActN ArgN

ActNV ArgNV

ActNR ArgNR

ActNVR ArgNVR

TAM’97 — TAM.fm 36/73 June 19, 1997 3:02 pm

is equal to token “%legal%”.

Depending on the operator used the type and the value of an arrow expression is as follows:

• InvocationArr

- the type of this arrow expression is equal to the type of values returned by this access-program,

- the value is equal to the value returned by a call of the access-program as described in Section 5.6.

• InvocationR or Invocation

- the type of this arrow expression is equal to the type of the argument with the operator ActNArr or ActNVArr,

- the value of this expression is equal to the value returned via this argument by a call of the access-program as
described in Section 5.6.

Example

The arrow expression int::MULT(x, y)➘ denotes the result value of an invocation of function-like access-pro-

gram MULT, multiplying two integers: x and y.

4.9 Logical expressions

4.9.1 Abstract syntax

log_expr ::=

False()

| True()

| LogEquivalent(log_expr, log_expr)

| Implies(log_expr, log_expr)

| And(log_expr, log_expr)

| Or(log_expr, log_expr)

| Not(log_expr)

| EqualTraces(trace_expr, trace_expr)

| NotEqualTraces(trace_expr, trace_expr)

| EqualNames(name_var, name_var)

| NotEqualNames(name_var, name_var)

| EquivalentTraces(trace_expr, trace_expr)

| ForAll(var_declaration_list, constraint, log_expr)

| Exists(var_declaration_list, constraint, log_expr)

| UniquelyExists(var_declaration_list, constraint, log_expr)

| LogTraceExpr(trace_expr)

| LogBracketing(log_expr)

name_var ::=

NameVar(ident)

TAM’97 — TAM.fm 37/73 June 19, 1997 3:02 pm

4.9.2 Presentation syntax

log_expr ::=

false

| true

| log_expr ⇔ log_expr

| log_expr ⇒ log_expr

| log_expr ∧ log_expr

| log_expr ∨ log_expr

| ¬ log_expr

| trace_expr = trace_expr

| trace_expr ≠ trace_expr

| name_var = name_var

| name_var ≠ name_var

| trace_expr ≡ trace_expr

| ∀ var_declaration_list constraint [log_expr]

| ∃ var_declaration_list constraint [log_expr]

| ∃! var_declaration_list constraint [log_expr]

| trace_expr

| (log_expr)

name_var ::=

ident

4.9.3 Referenced non-terminal symbols

4.9.4 Semantics

Each logical expression is either undefined or defined. In the latter case, it can be evaluated to logical values: false or
true. If the value is true, we say that the expression holds; if it is false, we say that the expression does not hold.

We apply eager evaluation of logical expressions, e.g., if one of the disjuncts is true while the other is undefined,
then the value of the disjunction is undefined. We formulate that rule of eager evaluation in the following sections.

4.9.4.1 Simple logical expressions

A logical expression is constructed of one of the following operators: False, True, LogEquivalent, Implies, And,
Or, Not, and is called a simple logical expression. A simple logical expression is defined iff all its arguments are de-

constraint Section 4.1

ident Section 3.2

trace_expr Section 4.7

var_declaration_list Section 4.2

TAM’97 — TAM.fm 38/73 June 19, 1997 3:02 pm

fined. The evaluation of a defined expression proceeds as in classical logic for corresponding operators:

4.9.4.2 Name equality

An expression described by EqualNames(name_var, name_var) is called a name equality. Both arguments of the
EqualNames operator must be name variables of the same type. The value of this expression is true iff the values of
its arguments are equal. The expression NotEqualNames(name_var, name_var) is an abbreviation of Not(Equal-

Names(name_var, name_var)).

4.9.4.3 Trace equality

An expression described by EqualTraces(trace_expr, trace_expr) is called a trace equality. The types of both ar-
guments must be the same. The value of this expression is defined iff the values of arguments are defined. The value
is true iff the traces being the values of arguments are equal. The expression NotEqualTraces(trace_expr,

trace_expr) is an abbreviation of Not(EqualTraces(trace_expr, trace_expr)).

4.9.4.4 Trace equivalence

An expression described by EquivalentTraces(trace_expr, trace_expr) is called a trace equivalence. The types of
both arguments must be the same. The value of this expression is defined iff the values of arguments are defined. The
value is true iff the reduced values of arguments are equal.

4.9.4.5 Quantified expressions

An expression described by ForAll(var_declaration_list, constraint, log_expr), Exists(var_declaration_list, con-

straint, log_expr), or UniquelyExists(var_declaration_list, constraint, log_expr) is called a quantified expression.

Let a quantified expression be denoted Quantifier(d, c, l), where Quantifier is either ForAll, Exists or Uniquely-

Exists, d stands for var_declaration_list, c is the argument of the operator ConstraintYes, if constraint has that
form, or true if constraint is ConstraintNo(), and l stands for log_expr.

Let us assume that the list d in a quantified expression Quantifier(d, c, l) contains only the declaration of a single
variable.

• The scope of the variable introduced in d is c and l.

• The value of this logical expression is defined iff:

- the value of each trace_expr in d is defined,

- for each assignment to the variable in d, the value of c is defined, and

Expression Meaning

False() false

True() true

LogEquivalent(log_expr, log_expr) logical equivalence

Implies(log_expr, log_expr) implication

And(log_expr, log_expr) conjunction

Or(log_expr, log_expr) disjunction

Not(log_expr) negation

TAM’97 — TAM.fm 39/73 June 19, 1997 3:02 pm

- for all the assignments that make c hold, the value of l is defined.

• The value of a quantified expression is defined as follows:

- if Quantifier is ForAll, this logical expression is true, iff each assignment satisfying c also satisfies l;

- if Quantifier is Exists, this logical expression is true, iff among the assignments satisfying c, there exists at least
one that also satisfies l;

- if Quantifier is UniquelyExists, this logical expression is true, iff among the assignments satisfying c, there exists
exactly one that also satisfies l.

If the list d introduces at least two variables, this expression is an abbreviation of the expression Quantifier(d1,
true, Quantifier(r, c, l)) where d1 is the list containing only the declaration of the first variable from d, and r is the
var_declaration_list obtained from d by deleting the declaration of the variable moved to d1.

Example

The following quantified expression defines the set of canonical traces of a stack of integers:

∃n: <int>; a[1]...a[n]: <int> [T = [PUSH(*, a[i])]].

4.9.4.6 Trace expression as a logical expression

An expression described by LogTraceExpr(trace_expr), called a logical-trace expression, allows an interpretation
of traces as logical values. The argument, trace_expr, must be of type bool. The expression LogTraceEx-

pr(trace_expr) is defined iff its argument is defined. Its value is true iff the trace_expr evaluates to a trace represent-
ing the logical value “true” (cf. 6.1.1).

4.9.4.7 Bracketing

An expression described by LogBracketing(log_expr), called a bracketing, allows a usage of parentheses within log-
ical expressions as it is known in standard mathematics. It is defined iff its argument is defined. Its value is the value
of the argument.

4.10 Associativity and precedence of operators (presentation syntax)

The operators “where”, “=”, “≠”, and ≡ are right associative, the others are left associative.

The following table describes the precedence of operators. Each box contains operators with the same prece-

dence. An operator has lower precedence than the operators in boxes on its left-hand side.

➘ .

=
≠
≡

¬ ∧ ∨ ⇒
⇔ where

n

i 1=

TAM’97 — TAM.fm 40/73 June 19, 1997 3:02 pm

Chapter 5 Structure of trace specifications

5.1 Specification

5.1.1 Abstract syntax

specification ::=

Specification(string, informal_introduction, characteristics_section, syntax_section,

canonical_section, semantics_section)

| Instance(type, type, act_param_list)

informal_introduction ::=

InformalIntroNo() | InformalIntroYes(text)

act_param_list ::=

[[act_param]]+

act_param ::=

type | trace_expr

5.1.2 Presentation syntax

specification ::=

| type = type(act_param_list)

informal_introduction ::=

act_param_list ::=

[[act_param]]+(,)

act_param ::=

type | trace_expr

string Module Interface Specification

informal_introduction

characteristics_section

syntax_section

canonical_section

semantics_section

ε
Informal Introduction

text

TAM’97 — TAM.fm 41/73 June 19, 1997 3:02 pm

5.1.3 Referenced non-terminal symbols

5.1.4 Semantics

A trace specification may be defined either from scratch (operator Specification) or as an instance of a parameterized
specification (operator Instance). Each trace specification introduces a new type. Identifiers of types introduced in
such a way are available at the global scope of a software project.

5.1.4.1 Structure of a specification

If the operator Specification is used, then a trace specification of a module forms a document with a fixed structure.
The document has its title (which plays an informal role), being described by the argument string of the Specification

operator. The second argument of this operator, informal_introduction, is an optional introductory text aiming to
help readers to understand the document. Then four sections follow, which correspond to the last four arguments of
the Specification operator (they are described in detail in Sections 5.2 – 5.8):

characteristics_section lists the type being specified, foreign types, and specification parameters;

syntax_section lists and characterizes access-programs, input variables, input variable events, and output variables;

canonical_section defines the set of canonical traces. This section may also include definitions of auxiliary functions,
used mainly to improve the document readability;

semantics_section defines the changes of objects caused by access-programs invocations and by input variable
events, and the values of output variables.

Specifications of the form Instance(type, type, act_param_list) define instances of parameterized specifications and
are discussed in 5.2.4.2.

A sample specification can be found in Appendix D.

5.2 Characteristics section

5.2.1 Abstract syntax

characteristics_section ::=

CharacteristicsSection(type, foreign_types, parameters)

foreign_types ::=

ForeignTypesNo() | ForeignTypesYes(type_list)

canonical_section Section 5.4

characteristics_section Section 5.2

semantics_section Section 5.5

string Section 3.2

syntax_section Section 5.3

text Section 3.2

trace_expr Section 4.7

type Section 3.4

TAM’97 — TAM.fm 42/73 June 19, 1997 3:02 pm

type_list ::=

[[type]]+

parameters ::=

ParametersNo() | ParametersYes(parameter_list, constraint)

parameter_list ::=

[[parameter]]+

parameter ::=

ParameterType(type) | ParameterConsts(simple_var_intro_list, type)

5.2.2 Presentation syntax

characteristics_section ::=

foreign_types ::=

ε | • foreign types: type_list

type_list ::=

[[type]]+(,)

parameters ::=

ε | • parameters: parameter_list constraint

parameter_list ::=

[[parameter]]+(;)

parameter ::=

type | simple_var_intro_list : type

(0) CHARACTERISTICS

• type specified: type

foreign_types

parameters

TAM’97 — TAM.fm 43/73 June 19, 1997 3:02 pm

5.2.3 Referenced non-terminal symbols

5.2.4 Semantics

The characteristics_section lists the type specified by the specification, the types used in this specification, and the
parameters of the specification. The type specified is called the domestic type. The types used in the specification are
called foreign in this specification.

Each identifier of a type from the argument of the ForeignTypesYes operator introduces the following entities from
the specification where this type is defined:

• the type itself,

• the empty trace of this type,

• access-programs as constructors of values of this type,

• input variable events as constructors of values of this type,

• predicate “canonical” and auxiliary functions,

• output relation (by means of the feasible function and arrow expressions; cf. 4.3.6 and 4.8.4.4),

• extension function (by means of the reduce function and arrow expressions; cf. 4.3.6 and 4.8.4.4).

The identifiers of these entities, except the type, have to be qualified (cf. Section 4.1) by the identifier of this type.

A foreign type list can only contain names of types of non-parameterized specifications or names of instances of
parameterized specifications.

Dependencies between specifications implied by foreign type lists cannot be circular. For example, if type t1 ap-

pears on the foreign type list in the specification of type t2, then type t2 cannot appear on the foreign type list in the

specification of type t1. More formally, it must be possible to define a partial order on the set of all specified types

(including instances of parameterized specifications, cf. 5.2.4.2) such that in each specification the types appearing on
the foreign type list precede the type specified by the specification.

5.2.4.1 Parameters

Parameterization allows reusing specifications. There are two kinds of specification parameters:

• a type parameter, described by the operator ParameterType, introduces a new type, being the argument of this
operator,

• value parameters are described by the operator ParameterConsts. They introduce a number of simple variables
listed in the first argument of this operator, simple_var_intro_list, each of them of the type being the second ar-
gument of this operator, type. Values of these variables are constrained by the constraint given as the second ar-
gument of the operator ParametersYes. The first argument of the operator ParameterConsts must be a non-
empty list.

The scope of each entity introduced by the argument of the ParametersYes operator, parameter_list, is the rest of
the specification following this introduction.

constraint Section 4.1

simple_var_intro_list Section 4.2

type Section 3.4

TAM’97 — TAM.fm 44/73 June 19, 1997 3:02 pm

Parameterized specifications can only be used to define instances of such specifications (cf. 5.2.4.2).

5.2.4.2 Instances of parameterized specifications

Each specification of the form Instance(type, type, act_param_list) defines an instance of a parameterized specifi-
cation, i.e., the one in which parameters are of the form ParametersYes(parameter_list, constraint). In that case
the following conditions must hold:

• The length of the act_param_list of the Instance operator is equal to the number of entities introduced in the
parameter_list of the corresponding ParametersYes operator.

• If the i-th entity introduced by parameter_list is a type then the i-th actual parameter is a type.

• If the i-th entity introduced by parameter_list is a simple variable then

- the i-th actual parameter is a trace_expr, and

- this trace_expr is of the type indicated by the second argument of the corresponding ParameterConsts opera-
tor.

• The logical expression defined by the second argument of ParametersYes operator, constraint, evaluates to true
for the values of trace expressions being actual parameters and corresponding to the simple variables introduced
in parameter_list of ParametersYes operator.

• The type being the first argument of Instance operator corresponds to the defined instance of the parameterized
specification identified by the type being the second argument of Instance operator. This instance is obtained in
a way described below.

Let assume that a parameterized specification is defined as type t1 with parameters p1, ..., pn. Let an instance of this

parameterized specification be defined by Instance(t2, t1, act_param_list) and let act_param_list evaluate to actual

parameters a1, ..., an. Then this instance introduces a new type t2 as the instance of type t1. The specification of t2

is obtained from t1 as follows:

1. the parameters list is removed;

2. t2 replaces all occurrences of t1;

3. for i=1,2,...,k if ai is a type (pi is then a type parameter), ai replaces all occurrences of pi and is added to the

foreign types list;

4. for i=1,2,...,k if ai is a trace expression (pi is then a value parameter defined by the identifier, say vi), the value

of ai replaces all occurrences of vi.

5.3 Syntax section

5.3.1 Abstract syntax

syntax_section ::=

SyntaxSection(access_programs, input_variables, output_variables)

access_programs ::=

AccessProgramsNo() | AccessProgramsYes(program_declaration_list)

input_variables ::=

InputVarsNo() | InputVarsYes(input_var_declaration_list)

TAM’97 — TAM.fm 45/73 June 19, 1997 3:02 pm

output_variables ::=

OutputVarsNo() | OutputVarsYes(output_var_declaration_list)

5.3.2 Presentation syntax

syntax_section ::=

access_programs ::=

input_variables ::=

output_variables ::=

(1) SYNTAX

access_programs

input_variables

output_variables

ε

ACCESS-PROGRAMS

Program Name Arg#1 Arg#2 . . . Result Type

program_declaration_list

ε

INPUT VARIABLES

Variable Name Type Condition of interest Event

input_var_declaration_list

ε

OUTPUT VARIABLES

Variable Name Type

output_var_declaration_list

TAM’97 — TAM.fm 46/73 June 19, 1997 3:02 pm

5.3.3 Referenced non-terminal symbols

5.3.4 Semantics

The syntax_section introduces access-programs, input variables (and input variable events), and output variables.
The declarations of access-programs and input variable events determine the set of traces (cf. Section 4.6).

5.3.5 Comments on the presentation syntax

The following conventions apply to the presentation syntax of the access-programs table (cf. Section 4.4):

• program_declaration_list is a sequence of rows in the table.

• program_declaration consists of two cells (ident, result_type) and a sequence of cells between them
(arg_description_list) in the table.

• The headers of “Arg#” columns in the table contain subsequent positive integers starting from 1.

• The number of “Arg#” columns in the table is equal to the maximum length of arg_description_list in all
program_declarations.

• If in a program_declaration the arg_description_list is shorter than the number of “Arg#” columns, then the
outstanding cells are empty.

• result_type is always placed in the Result Type column.

• If all cells in the Result Type column are empty it can be omitted from the table.

• Subsequent cells in the table are aligned to its first row.

The input_var_declaration_list is a sequence of rows in the input variables table. The
output_var_declaration_list is a sequence of rows in the output variables table.

5.4 Canonical section

5.4.1 Abstract syntax

canonical_section ::=

CanonicalSection(simple_var_intro, log_expr, empty_equivalence, aux_fct_section)

empty_equivalence ::=

EmptyEquivalenceNo

| EmptyEquivalenceYes(trace_expr)

aux_fct_section ::=

AuxiliaryFunctionsNo()

| AuxiliaryFunctionsYes(fct_declaration_list)

fct_declaration_list ::=

input_var_declaration_list Section 4.5

output_var_declaration_list Section 4.5

program_declaration_list Section 4.4

TAM’97 — TAM.fm 47/73 June 19, 1997 3:02 pm

[[fct_declaration]]+

5.4.2 Presentation syntax

canonical_section ::=

empty_equivalence ::=

ε | _ ≡ trace_expr

aux_fct_section ::=

fct_declaration_list ::=

5.4.3 Referenced non-terminal symbols

5.4.4 Semantics

A canonical_section introduces a predicate canonical which defines the set of canonical traces. It is treated as an
auxiliary function defined as follows:

canonical : <<x>> → bool

canonical(T) e

where x is the domestic type and e is log_expr.

Trace T0 of the domestic type is canonical iff e[T ← T0] holds. This predicate like auxiliary functions can be re-

cursive, i.e., “canonical” may occur within the log_expr.

The empty_equivalence of the form EmptyEquivalenceYes(e) specifies a canonical trace, e, equivalent to the

(2) CANONICAL TRACES

canonical(simple_var_intro) ⇔ log_expr

empty_equivalence

aux_fct_section

ε
AUXILIARY FUNCTIONS

fct_declaration_list

fct_declaration
fct_declaration

fct_declaration_list

fct_declaration Section 4.3

ident Section 3.2

log_expr Section 4.9

simple_var_intro Section 4.2

trace_expr Section 4.7

=
df

TAM’97 — TAM.fm 48/73 June 19, 1997 3:02 pm

empty trace. If the operator EmptyEquivalenceNo is used, then the empty trace must be canonical, i.e., canonical(_)
must hold.

Auxiliary functions are discussed in Section 4.3.

5.5 Semantics section

5.5.1 Abstract syntax

semantics_section ::=

SemanticsSection(invocation_functions, input_var_event_functions, output_var_values)

invocation_functions ::=

InvocationsFunctionsNo() | InvocationsFunctionsYes(invocation_function_list)

input_var_event_functions ::=

InputVarEventsFunctionsNo() | InputVarEventsFunctionsYes(input_var_event_function_list)

output_var_values ::=

OutputVarValuesNo() | OutputVarValuesYes(output_var_value_list)

5.5.2 Presentation syntax

semantics_section ::=

invocation_functions ::=

input_var_event_functions ::=

output_var_values ::=

(3) SEMANTICS

invocation_functions

input_var_event_functions

output_var_values

ε
ACCESS-PROGRAMS

invocation_function_list

ε
INPUT VARIABLES

input_var_event_function_list

ε
OUTPUT VARIABLES

output_var_value_list

TAM’97 — TAM.fm 49/73 June 19, 1997 3:02 pm

5.5.3 Referenced non-terminal symbols

5.5.4 Semantics

In the semantics_section we describe the effects of events affecting the module (cf. Section 2.2). These events are
access-program invocations and input variable events. Each event may change the states of objects in the specified
module and/or may change the states of objects of foreign types passed as argument of this event. If the specified mod-
ule defines output variables, the change of the state of a domestic object is followed by the assignment of new values
to the output variables.

The semantics_section consists of three sections:

• The invocation_functions section describes the effects of access-program invocations. It defines the extension
function (in the case of outputs of the domestic type), and the output relation (in the case of outputs of the foreign
types) for each access-program.

• The input_var_event_functions section describes the effects of input variable events. It defines the extension
function for each input variable event.

• The output_var_values section describes the value of each output variable as a function of the state of the corre-
sponding domestic object. It defines the output relation for output variables.

5.6 Invocation functions

5.6.1 Abstract syntax

invocation_function_list ::=

[[invocation_function]]+

invocation_function ::=

InvocationFunction(legality, invocation_sub_function_list)

legality ::=

Legality(formal_invocation, token_expr)

token_expr ::=

Token(token)

| TokenTable(token_entry_list)

token_entry_list ::=

[[token_entry]]+

token_entry ::=

TokenEntry(log_expr, token_expr)

invocation_sub_function_list ::=

input_var_event_function_list Section 5.7

invocation_function_list Section 5.6

output_var_value_list Section 5.8

TAM’97 — TAM.fm 50/73 June 19, 1997 3:02 pm

[[invocation_sub_function]]+

invocation_sub_function ::=

InvocationSubFunction(formal_invocation, output_expr)

formal_invocation ::=

FmlInvocation(ident, formal_arg_list)

| FmlInvocationArr(ident, formal_arg_list)

| FmlInvocationR(ident, formal_arg_list, simple_var_intro)

formal_arg_list ::=

[[formal_arg]]*

formal_arg ::=

FmlN(name_var_intro)

| FmlV(simple_var_intro)

| FmlNArr(name_var_intro)

| FmlNR(name_var_intro, simple_var_intro)

| FmlNV(name_var_intro, simple_var_intro)

| FmlNVArr(name_var_intro, simple_var_intro)

| FmlNVR(name_var_intro, simple_var_intro, simple_var_intro)

output_expr ::=

OutputValueConstraint(log_expr)

| OutputValue(trace_expr)

5.6.2 Presentation syntax

invocation_function_list ::=

invocation_function ::=

legality ::=

Legality(formal_invocation) = token_expr

invocation_function
invocation_function

invocation_function_list

legality

invocation_sub_function_list

TAM’97 — TAM.fm 51/73 June 19, 1997 3:02 pm

token_expr ::=

token_entry_list ::=

token_entry ::=

invocation_sub_function_list ::=

invocation_sub_function ::=

formal_invocation output_expr

formal_invocation ::=

ident(formal_arg_list)

| ident(formal_arg_list) ➘

| ident(formal_arg_list) ➘ simple_var_intro

formal_arg_list ::=

[[formal_arg]]*(,)

formal_arg ::=

name_var_intro

| simple_var_intro

| name_var_intro ➘

| name_var_intro ➘ simple_var_intro

| (name_var_intro, simple_var_intro)

| (name_var_intro, simple_var_intro) ➘

| (name_var_intro, simple_var_intro) ➘ simple_var_intro

output_expr ::=

‘|’ log_expr

| = trace_expr

token
Condition Value

token_entry_list

token_entry
token_entry

token_entry_list

log_expr token_expr

invocation_sub_function
invocation_sub_function

invocation_sub_function_list

TAM’97 — TAM.fm 52/73 June 19, 1997 3:02 pm

5.6.3 Referenced non-terminal symbols

5.6.4 Semantics

Each invocation_function describes one access-program; its identifier is the first argument of the operator FmlInvo-

cation in the formal_invocation of legality.

5.6.4.1 Legality function

Intuitively, legal invocations are those for which the module is expected to be useful. A user is supposed to avoid illegal
invocations; they will not occur if the module is used correctly. An example of an illegal invocation is the call to TOP
on the empty stack — the returned value is useless. We distinguish two kinds of illegal invocations: fatal and errone-
ous. They are characterized below.

The legality of invocations is defined by the Legality function. The range of the Legality function is a set of status

tokens (token). This function partitions invocations into three groups:

• legal invocations (the returned token is “%legal%”). Such invocations are correct, they always terminate and return
the specified values;

• fatal invocations (the returned token is “%fatal%”). If such an invocation occurs, anything can happen, e.g., the
invocation does not have to terminate, the computer system may crash; if the invocation terminates, then the re-
turned values are arbitrary;

• erroneous invocations (the returned token is different from “%legal%” and “%fatal%”). In this case, the status to-
ken corresponds to a warning and we assume that no object is changed by such an invocation.

The value of the Legality function depends on the actual arguments of the invocation (not on the output values).
The legality must contain formal_arg_list of the same length as the corresponding arg_description_list from the ac-
cess-program table. Each formal_arg on this list must correspond to the input/output mode of the argument as follows:

The type of each simple variable introduced by a formal_arg is the same as the type of the corresponding argument
of the access-program. The type of objects denoted by each name variable introduced by a formal_arg is the same as
the type of the corresponding argument of the access-program. The variables introduced in the formal_arg_list are

ident Section 3.2

log_expr Section 4.9

name_var_intro Section 4.2

simple_var_intro Section 4.2

string Section 3.2

token Section 3.2

trace_expr Section 4.7

arg_mode formal_arg Interpretation

V() FmlV(simple_var_intro) A value

O(), R() FmlN(name_var_intro) A name of an object

VO(), VR() FmlNV(name_var_intro, simple_var_intro) A name of an object and its value
before the invocation

TAM’97 — TAM.fm 53/73 June 19, 1997 3:02 pm

formal arguments of Legality. Their scope is the token_expr on the right-hand side of the legality.

A token_expr of the form Token(token) is always defined. If a token_expr is of the form TokenT-

able(token_entry_list) then its definedness conditions and evaluation are similar to these for trace_table (cf.
4.7.4.11). The value of the Legality function is the value of the second argument of Legality operator, trace_expr.

Note that the legality function in TAM corresponds to program preconditions in other formal specification meth-
ods.

5.6.4.2 Invocation sub-functions

If an invocation is legal, we describe the output values of the arguments and the returned value (if the access-program
is function-like). We do it by means of a collection of functions and relations. Each invocation_function describes
one access-program. For each output argument including the value returned by the program, there is
invocation_sub_function. If an output argument is non-deterministic or the program’s result type is labeled by R,
then the corresponding invocation_sub_function describes a relation.

The formal_arg_list in each formal_invocation must be of the same length as the corresponding
arg_description_list from the access-program table. If an invocation_sub_function describes an output argument

then this argument is called a distinguished argument, and its form depends on the input/output mode as follows:

If the same object is passed via several arguments, then all invocation sub-functions corresponding to these arguments
must define the same value.

The operator of formal_invocation is defined by the following table:

If the operator is FmlInvocationR, then its third argument, simple_var_intro, represents the non-deterministically
returned value.

arg_mode formal_arg Interpretation

O() FmlNArr(name_var_intro) A name of an object

R() FmlNR(name_var_intro, simple_var_intro) A name of an object and its value after
the invocation

VO() FmlNVArr(name_var_intro, simple_var_intro) A name of an object and its value before
the invocation

VR() FmlNVR(name_var_intro, simple_var_intro,
simple_var_intro)

A name of an object, its value before the
invocation, and its value after the invocation

invocation sub-function describes an output argument, and
invocation sub-function describes

a value returned by the program, and

program is not function-like,
or is

function-like and deterministic

program is function-like and
non-deterministic, and

this value is
deterministic

this value is not
deterministicthe distinguished

argument is
domestic

the distinguished
argument is

foreign

FmlInvocation FmlInvocationR FmlInvocation FmlInvocationArr FmlInvocationR

TAM’97 — TAM.fm 54/73 June 19, 1997 3:02 pm

The form of each non-distinguished argument and the semantics of the invocation sub-function depends on the
fact whether the type of the distinguished argument is domestic or foreign, i.e., the invocation sub-function defines an
extension function or an output relation.

5.6.4.2.1 The output relation

The form of each non-distinguished argument depends on its input/output mode as follows:

The type of each simple variable introduced by a formal_arg is the same as the type of the corresponding argument
of the access-program. The type of objects denoted by each name variable introduced by a formal_arg is the same as
the type of the corresponding argument of the access-program.

The variables introduced in the formal_invocation are formal arguments of the invocation sub-function. The
scope of these variables is the output_expr.

The output_expr of the invocation sub-function defining an output of a foreign type depends on the fact whether
the output being described is deterministic.

If the output being described is deterministic, then the invocation_sub_function describes a function, and
output_expr is of the form OutputValue(trace_expr). The value of this function is equal to the value of the argument
of the operator OutputValue, trace_expr, with the actual arguments substituted for the formal ones. This value must
be a canonical trace of the type of the corresponding distinguished argument or the type of the returned value.

If the output being described is non-deterministic, then the invocation_sub_function describes a relation and
output_expr is of the form OutputValueConstraint(log_expr). The output value is represented by a simple variable,
v, being either the second argument of the operator FmlNR, the third argument of the operator FmlNVR, or the third
argument of the operator FmlInvocationR. An output value, T, is possible if the logical expression log_expr holds
when we substitute T for v.

5.6.4.2.2 The extension function

The form of each non-distinguished argument depends on its input/output mode as follows:

arg_mode formal_arg Interpretation

V() FmlV(simple_var_intro) A value

O(), R() FmlN(name_var_intro) A name of an object

VO(), VR() FmlNV(name_var_intro, simple_var_intro) A name of an object and its value
before the invocation

arg_mode formal_arg Interpretation

V() FmlV(simple_var_intro) A value

O() FmlN(name_var_intro) A name of an object

R() FmlNR(name_var_intro, simple_var_intro) A name of an object
and its value
after the invocation

TAM’97 — TAM.fm 55/73 June 19, 1997 3:02 pm

The type of each simple variable introduced by a formal_arg is the same as the type of the corresponding argument
of the access-program. The type of objects denoted by each name variable introduced by a formal_arg is the same as
the type of the corresponding argument of the access-program.

The variables introduced in the formal_invocation are formal arguments of the invocation sub-function. The
scope of these variables is the output_expr.

The output_expr of the invocation sub-function defining an output of the domestic type must be of the form Out-

putValue(trace_expr) — all domestic outputs are deterministic. The value of this invocation sub-function is equal to
the value of the trace_expr with the actual arguments substituted for the formal ones. This value must be a canonical
trace of the domestic type.

Note that domestic output values may depend on non-deterministic foreign output values.

5.6.5 Comments on the presentation syntax

Each invocation_function describes one access-program. Therefore, the first ident in each formal_invocation must
be the identifier of the described program.

5.7 Input variable event functions

5.7.1 Abstract syntax

input_var_event_function_list ::=

[[input_var_event_function]]+

input_var_event_function ::=

InputVarEventFunction(formal_input_var_event, trace_expr)

formal_input_var_event ::=

FmlInputVarEvent(ident, simple_var_intro, simple_var_intro)

VO() FmlNV(name_var_intro, simple_var_intro) A name of an object
and its value
before the invocation

VR() FmlNVR(name_var_intro, simple_var_intro, simple_var_intro) A name of an object, its
value before the invoca-
tion, and its value after
the invocation

arg_mode formal_arg Interpretation

TAM’97 — TAM.fm 56/73 June 19, 1997 3:02 pm

5.7.2 Presentation syntax

input_var_event_function_list ::=

input_var_event_function ::=

formal_input_var_event = trace_expr

formal_input_var_event ::=

ident(simple_var_intro ➘ , simple_var_intro)

5.7.3 Referenced non-terminal symbols

5.7.4 Semantics

Each InputVarEventFunction(formal_input_var_event, trace_expr) describes the effect of the input variable
event on the value of the domestic object. This effect does not depend on the identity of the object, thus the name of
the object is not delivered among the arguments of InputVarEventFunction. The arguments of operator FmlInput-

VarEvent of formal_input_var_event are:

1. ident which identifies the input variable event which must be defined by InputVarCondition(condition, ident)

introduced as one of elements of input_var_condition_list being the third argument of InputVarDeclara-

tion(simple_var_intro, type, input_var_condition_list) in a module identified by qualifier, c.f. Section 4.5.

2. simple_var_intro given as the second argument of FmlInputVarEvent introduces a simple variable representing
a value of the domestic object before the event occurred. This variable is of the domestic type and its scope is re-
stricted to the trace_expr argument of the InputVarEventFunction operator.

3. simple_var_intro given as the third argument of FmlInputVarEvent introduces a simple variable representing a
new value of the input variable related to this input variable event. The type of this simple variable is the type of
the input variable as defined in the second argument of InputVarDeclaration(simple_var_intro, type,

input_var_condition_list) and its scope is restricted to the trace_expr argument of the InputVarEventFunction

operator. Note that for the new value of the conditional input variable defined by the BecomesTrue(log_expr)

operator, the log_expr must hold, and for the new value of the conditional input variable defined by the Becomes-

False(log_expr) operator, the log_expr must not hold.

The value of the domestic object after the input variable event occurred is equal to the value of the trace_expr

with the formal arguments substituted with actual arguments. The trace_expr must be defined and its value must be
a canonical trace of the domestic type.

input_var_event_function
input_var_event_function

input_var_event_function_list

ident Section 3.2

simple_var_intro Section 4.2

trace_expr Section 4.7

TAM’97 — TAM.fm 57/73 June 19, 1997 3:02 pm

5.8 Definitions of values of output variables

5.8.1 Abstract syntax

output_var_value_list ::=

[[output_var_value]]+

output_var_value ::=

OutputVarValue(formal_output_var, trace_expr)

formal_output_var ::=

FmlOutputVar(ident, simple_var_intro)

5.8.2 Presentation syntax

output_var_value_list ::=

output_var_value ::=

formal_output_var = trace_expr

formal_output_var ::=

ident(simple_var_intro) ➘

5.8.3 Referenced non-terminal symbols

5.8.4 Semantics

Each OutputVarValue(formal_output_var_value, trace_expr) describes the value of an output variable as a func-
tion of the state of the corresponding domestic object. This value does not depend on the identity of the object, thus
the name of the object is not delivered among the arguments of the OutputVarValue operator.

There is exactly one output_var_value equation for every output variable defined in the specification. The first
two arguments of the FmlOutputVar operator are:

1. ident which identifies the output variable which has been introduced as the first argument of the OutputVarDecla-

ration operator in output_var_declaration.

2. simple_var_intro which introduces a simple variable representing a current value of the domestic object. This
variable is of the domestic type and its scope is restricted to the trace_expr argument of the OutputVarValue op-
erator.

The type of trace_expr must be the same as the type defined by type in OutputVarDeclaration(ident, type) of

output_var_value
output_var_value

output_var_value_list

ident Section 3.2

simple_var_intro Section 4.2

trace_expr Section 4.7

TAM’97 — TAM.fm 58/73 June 19, 1997 3:02 pm

output_var_declaration. The value of trace_expr must be defined and canonical.

5.9 Definedness of specifications

 A correct specification must satisfy the following conditions:

• The specification of any type introduced by foreign_types is correct.

• Dependencies between specifications implied by foreign types list cannot be circular (c.f. 5.2.4).

• The predicate canonical is total, i.e., the value of the first argument of the operator CanonicalSection, log_expr,
is defined.

• If the empty_equivalence is of the form EmptyEquivalenceYes(e), then e is a canonical trace, and if the oper-
ator EmptyEquivalenceNo is used, then the empty trace is canonical.

• The auxiliary functions are defined, i.e., the value of the forth argument of the operator FunctionDeclaration,
constraint, is defined, and if it evaluates to true, then the value of the last argument of this operator, trace_expr,
is defined and belongs to the range of this function.

• The invocation functions are defined, i.e.,

- the value of the second argument of the operator Legality, token_expr, is defined,

- the value of the argument of the operator OutputValueConstraint, log_expr, is defined, and

- the value of the argument of the operator OutputValue, trace_expr, is defined and canonical.

• The input variable conditions are defined, i.e., the argument of the operators BecomesTrue and BecomesFalse,
log_expr, is defined.

• The input variable event functions are defined, i.e., the value of the second argument of the operator Input-

VarEventFunction, trace_expr, is defined and canonical.

• The value of the reduction function for each canonical trace must be this trace itself.

• Output variable values are defined, i.e., the value of the second argument of the operator OutputVarValue,
trace_expr, is defined and canonical.

• Any recursion in the definitions of functions and relations must be terminating.

TAM’97 — TAM.fm 59/73 June 19, 1997 3:02 pm

Chapter 6 Basic types

6.1 Predefined types

Certain types are used very often. They appear on the foreign types list in almost every specification. They are: bool,
char, int, real.

We call them predefined types and assume that they are foreign in specifications of non-predefined types even if
the predefined types are not present on the foreign types list. Auxiliary functions and constants of predefined types
need not be qualified. Appendix A and Appendix B contain specifications of bool and int. A specification of real de-
pends very much on the architecture of the computer, therefore for real we informally introduce available operations
and the way in which constants of this type are written. Type char is defined as an enumeration type (cf. Section 6.2).
As in the case of real, we describe how to use this type in other specifications.

6.1.1 Type bool

The specification of bool can be found in Appendix A. There are two canonical traces of type bool: the empty trace
representing false and SUCC(*) representing true.

In a specification where bool is a foreign type, logical expressions and trace expressions that yield traces of bool
are interchangeable:

• wherever a log_expr is expected, we can put a trace_expr of type bool (cf. 4.9.4.6);

• wherever a trace_expr of type bool is expected, we can put a log_expr (cf. 4.7.4.12).

Thus bool allows us to define auxiliary predicates: they are auxiliary functions with the range equal to bool.

6.1.2 Type int

The canonical traces of int represent arbitrary integers (thus the set of canonical traces is infinite). Each canonical trace
is a sequence of SUCC(*) possibly ended with NEG(*). The represented integer is equal to the number of the invoca-
tions of SUCC, or if an invocation of NEG is present, to the negated number of occurrences of SUCC(*).

In specifications where int is foreign, we can use standard notation for integer constants: they are non-empty se-
quences of digits optionally preceded by “−” or “+”. We can also use certain concepts based on int:

• auxiliary functions count and length (cf. 4.3.6),

• indexed variables (cf. 4.2.4.1.2),

• iterations (cf. 4.7.4.7).

The auxiliary functions from int: “+”, (binary) “−”, “*”, “div”, “mod”, “<”, “≤”, “>”, “≥” are written in the infix
notation (this is an exception to the syntax of auxiliary function applications; user-defined functions cannot be infix).
Unary “−” can be applied without parentheses surrounding its argument. The precedence of unary “−” is higher than
the precedence of “➘ ” (cf. Section 4.10). “+”, binary “−”, “*”, “div”, “mod” are left associative. Their precedence
(also “<”, “≤”, “>”, “≥”) is as follows (an operator has lower precedence than the operators in boxes on its left-hand

TAM’97 — TAM.fm 60/73 June 19, 1997 3:02 pm

side):

The precedence of “*”, “mod”, “div” is lower than the precedence of the dot (“.”), while the precedence of “<”, “≤”,
“>”, “≥” is equal to the precedence of “=” and “≠” (cf. Section 4.10).

6.1.3 Type real

A specification of real must define the following auxiliary functions: “+”, (unary) “−”, (binary) “−”, “*”, “/”, “<”, “≤”,
“>”, “≥”. All these functions should have their standard meaning. All but the unary minus are written in infix notation.
The precedence and associativity of them are the same as for the corresponding operators of int (“/” corresponds to
“div”). Note that these operators are overloaded which is not allowed for user-defined auxiliary functions.

6.1.4 Type char

Type char is defined as an enumeration type (cf. Section 6.2). A character enclosed in single quotes is a constant of
type char. The set of these constants and their ordering is consistent with ASCII.

6.2 Enumeration types

In Appendix C we present a schema to specify enumeration types. Parameter n corresponds to the number of enumer-
ation constants, and canonical traces correspond to these constants. The specification of an enumeration type defines
auxiliary functions “<”, “≤”, “>” and “≥”. The infix notation is used in their applications, they have the same prece-
dence as the corresponding functions for int. Remember that this function symbols are overloaded (cf. 6.1.2 and 6.1.3).

The equation:

t = [c1, c2,..., ck]

can appear in places where the operator Instance is allowed. This equation can be regarded as the introduction of an
instance of this schema. The number of constants, k, is the actual value of parameter n of the schema specification, and

for i=1,2,...,k, c is an ident (cf. Section 3.2). Constant ci represents canonical trace [t::SUCC(*)] .

*

mod

div

+

−

<

≤
≥
>

i 1–

j 1=

TAM’97 — TAM.fm 61/73 June 19, 1997 3:02 pm

Appendix A Specification of bool

Bool Module Interface Specification

(0) CHARACTERISTICS

• type specified: bool

(1) SYNTAX

ACCESS-PROGRAMS

(2) CANONICAL TRACES

canonical(T) ⇔ T = _ ∨ T = SUCC(*)

AUXILIARY FUNCTIONS

and : <bool> × <bool> → <bool>

and (x, y)

Program Name Arg#1 Arg#2 Result Type

AND bool : V bool : V bool

ASSIGN bool : O bool : V

EQUIV bool : V bool : V bool

IMPLIES bool : V bool : V bool

NOT bool : V bool

OR bool : V bool : V bool

PRED bool : VO

SUCC bool : VO

XOR bool : V bool : V bool

Condition Value

x = _ ∨ y = _ _

x ≠ _ ∧ y ≠ _ SUCC(*)

=
df

TAM’97 — TAM.fm 62/73 June 19, 1997 3:02 pm

equiv : <bool> × <bool> → <bool>

equiv (x, y)

not : <bool> → <bool>

not (x) U where U : <bool> [x ≠ U]

(3) SEMANTICS

ACCESS-PROGRAMS

Legality(AND(T, U)) = %legal%

AND(T, U)➘ = and(T, U)

Legality(ASSIGN(n, U)) = %legal%

ASSIGN(n➘, U) = U

Legality(EQUIV(T, U)) = %legal%

EQUIV(T, U)➘ = equiv(T, U)

Legality(IMPLIES(T, U)) = %legal%

IMPLIES(T, U)➘ = not(and(T, not(U)))

Legality(NOT(T)) = %legal%

NOT(T)➘ = not(T)

Legality(OR(T, U)) = %legal%

OR(T, U)➘ = not(and(not(T), not(U)))

Legality(PRED((n, T))) =

PRED((n, T)➘) = _

Condition Value

x ≠ y _

x = y SUCC(*)

Condition Value

T = _ %fatal%

T ≠ _ %legal%

=
df

=
df

TAM’97 — TAM.fm 63/73 June 19, 1997 3:02 pm

Legality(SUCC((n, T))) =

SUCC((n, T)➘) = SUCC(*)

Legality(XOR(T, U)) = %legal%

XOR(T, U)➘ = not(equiv(T, U))

Condition Value

T = _ %fatal%

T ≠ _ %legal%

TAM’97 — TAM.fm 64/73 June 19, 1997 3:02 pm

Appendix B Specification of int

Integer Module Interface Specification

(0) CHARACTERISTICS

• type specified: int

• foreign types: bool

(1) SYNTAX

ACCESS-PROGRAMS

(2) CANONICAL TRACES

canonical(T) ⇔ T = _ ∨ T = SUCC(*).NEG(*) ∨ ∃T1 : <<int>> (T = SUCC(*).T1) [canonical(T1)]

AUXILIARY FUNCTIONS

pred : <int> → <int>

pred (x)

Program Name Arg#1 Arg#2 Result Type

ASSIGN int : O int : V

DIV int : V int : V int

EQUAL int : V int : V bool

LESS int : V int : V bool

MINUS int : V int : V int

MOD int : V int : V int

NEG int : VO

PLUS int : V int : V int

PRED int : VO

SUCC int : VO

TIMES int : V int : V int

Condition Value

∃! x1 : <int> [x = x1.NEG(*)] SUCC(*).x

x = _ SUCC(*).NEG(*)

∃! x1 : <int> [x = x1.SUCC(*)] x1

=
df

TAM’97 — TAM.fm 65/73 June 19, 1997 3:02 pm

succ : <int> → <int>

succ (x)

+ : <int> × <int> → <int>

x + y

− : <int> → <int>

−x

− : <int> × <int> → <int>

x − y x + (− y)

* : <int> × <int> → <int>

x * y

Condition Value

¬∃! x1 : <int> [x = x1.NEG(*)] x.SUCC(*)

x = SUCC(*).NEG(*) _

∃! x1 : <int> [x = x1.SUCC(*).SUCC(*).NEG(*)] x1.SUCC(*).NEG(*)

Condition Value

x = _ y

x = SUCC(*).NEG(*) pred(y)

∃! x1 : <int> [x = x1.SUCC(*)] succ(x1 + y)

∃! x1 : <int> [x = x1.SUCC(*).SUCC(*).NEG(*)] pred(x1.SUCC(*).NEG(*) + y)

Condition Value

x = _ _

∃! x1 : <int> [x = x1.SUCC(*)] x.NEG(*)

∃! x1 : <int> [x = x1.NEG(*)] x1

Condition Value

x = _ _

∃! x1 : <int> [x = x1.SUCC(*)] x1 * y + y

∃! x1 : <int> [x = x1.NEG(*)] −(x1 * y)

=
df

=
df

=
df

=
df

=
df

TAM’97 — TAM.fm 66/73 June 19, 1997 3:02 pm

div : <int> × <int> → <int>

x div y (y ≠ _) z where z, r : <int> [z * y + r = x ∧ SUCC(*).NEG(*) < r ∧ r < y]

mod : <int> × <int> → <int>

x mod y (y ≠ _) x − y * (x div y)

< : <int> × <int> → <bool>

x < y ∃z : <int> [x − y = z.NEG(*)]

≤ : <int> × <int> → <bool>

x ≤ y x = y ∨ x < y

≥ : <int> × <int> → <bool>

x ≥ y ¬ x < y

> : <int> × <int> → <bool>

x > y ¬ x ≤ y

(3) SEMANTICS

ACCESS-PROGRAMS

Legality(ASSIGN(n, T)) = %legal%

ASSIGN(n➘, T) = T

Legality(DIV(T, U)) =

DIV(T, U)➘ = T div U

Legality(EQUAL(T, U)) = %legal%

EQUAL(T, U)➘ = T = U

Legality(LESS(T, U)) = %legal%

LESS(T, U)➘ = T < U

Legality(MINUS(T, U)) = %legal%

MINUS(T, U)➘ = T − U

Condition Value

U = _ %fatal%

U ≠ _ %legal%

=
df

=
df

=
df

=
df

=
df

=
df

TAM’97 — TAM.fm 67/73 June 19, 1997 3:02 pm

Legality(MOD(T, U)) =

MOD(T, U)➘ = T mod U

Legality(NEG((n, U))) = %legal%

NEG((n, U)➘) = − U

Legality(PLUS(T, U)) = %legal%

PLUS(T, U)➘ = T + U

Legality(PRED((n, T))) = %legal%

PRED((n, T)➘) = pred(T)

Legality(SUCC((n, T))) = %legal%

SUCC((n, T)➘) = succ(T)

Legality(TIMES(T, U)) = %legal%

TIMES(T, U)➘ = T * U

Condition Value

U = _ %fatal%

U ≠ _ %legal%

TAM’97 — TAM.fm 68/73 June 19, 1997 3:02 pm

Appendix C Schema for enumeration type definitions

Enumeration Module Interface Specification

(0) CHARACTERISTICS

• type specified: enum

• foreign types: bool, int

(1) SYNTAX

ACCESS-PROGRAMS

(2) CANONICAL TRACES

canonical(T) ⇔ ∃i : <int> (i < n) [T = [SUCC(*)]]

AUXILIARY FUNCTIONS

< : <enum> × <enum> → <bool>

x < y length(x) < length(y)

≤ : <enum> × <enum> → <bool>

x ≤ y x = y ∨ x < y

≥ : <enum> × <enum> → <bool>

x ≥ y ¬ x < y

> : <enum> × <enum> → <bool>

x > y ¬ x ≤ y

Program Name Arg#1 Arg#2 Result Type

ASSIGN enum : O enum : V

ELEM int : V enum

EQUAL enum : V enum : V bool

LESS enum : V enum : V bool

ORD enum : V int

PRED enum : VO

SUCC enum : VO

i

j 1=

=
df

=
df

=
df

=
df

TAM’97 — TAM.fm 69/73 June 19, 1997 3:02 pm

ord : <enum> → <int>

ord(T) length(T)

pred : <enum> → <enum>

pred (T) (T ≠ _) T1 where T1 : <enum> [T = T1.SUCC(*)]

succ : <enum> → <enum>

succ (T) (length(T) < n − 1) T.SUCC(*)

(3) SEMANTICS

ACCESS-PROGRAMS

Legality(ASSIGN(m, U)) = %legal%

ASSIGN(m➘, U) = U

Legality(ELEM(k)) =

ELEM(k)➘ = [SUCC(*)]

Legality(EQUAL(T, U)) = %legal%

EQUAL(T, U)➘ = (T = U)

Legality(LESS(T, U)) = %legal%

LESS(T, U)➘ = (T < U)

Legality(ORD(T)) = %legal%

ORD(T)➘ = ord(T)

Legality(PRED((m, T))) =

PRED((m, T)➘) = pred(T)

Condition Value

0 > k ∨ k > n − 1 %fatal%

0 ≤ k ∧ k ≤ n − 1 %legal%

Condition Value

T = _ %fatal%

T ≠ _ %legal%

=
df

=
df

=
df

k

i 1=

TAM’97 — TAM.fm 70/73 June 19, 1997 3:02 pm

Legality(SUCC((m, T))) =

SUCC((m, T)➘) = succ(T)

Condition Value

length(T) = n − 1 %fatal%

length(T) < n − 1 %legal%

TAM’97 — TAM.fm 71/73 June 19, 1997 3:02 pm

Appendix D Example Specification

Extended Stack Module Interface Specification

(0) CHARACTERISTICS

• type specified: example

(1) SYNTAX

ACCESS-PROGRAMS

(2) CANONICAL TRACES

canonical(T) ⇔ ∃n: <int>; a[1]...a[n]: <int> [T = [PUSH(*, a[i])]]

(3) SEMANTICS

ACCESS-PROGRAMS

Legality(JOIN((n, T), (m, U))) = %legal%

JOIN((n, T)➘, (m, U)) = T.U

JOIN((n, T), (m, U)➘) =

Program Name Arg#1 Arg#2 Result Type

JOIN example:VO example:VO

MULT example:VO

NEG example:VO

PLUS example:VO

POP example:VO int:V

PUSH example:VO int:V

SHIFT example:VO int:V

TOP example:V int

Condition Value

n ≠ m U

n = m T.U

n

i 1=

TAM’97 — TAM.fm 72/73 June 19, 1997 3:02 pm

Legality(MULT((n, T))) =

MULT((n, T)➘) = B.PUSH(*, int::TIMES(x, y)➘) where B: <example>; x, y: <int> [T = B.PUSH(*, x).PUSH(*,
y)]1

Legality(NEG((n, T))) =

NEG((n, T)➘) = B.PUSH(*, int::NEG((*1, x)➘)) where B: <example>; x: <int> [T = B.PUSH(*, x)]2

Legality(PLUS((n, T))) =

PLUS((n, T)➘) = B.PUSH(*, x + y) where B: <example>; x, y: <int> [T = B.PUSH(*, x).PUSH(*, y)]

Legality(POP((n, T), i)) =

POP((n, T)➘, i) = B where B, E: <example> [T = B.E ∧ length(E) = i]

Legality(PUSH((n, T), x)) = %legal%

PUSH((n, T)➘, x) = T.PUSH(*, x)

1. The expression int::TIMES(x, y)➘ is used for illustration purpose only and could be rewritten as x * y.
2. The expression int::NEG((*1, x)➘) is used for illustration purpose only and could be rewritten as -x.

Condition Value

length(T) < 2 %too low%

length(T) ≥ 2 %legal%

Condition Value

T = _ %empty%

T ≠ _ %legal%

Condition Value

length(T) < 2 %too low%

length(T) ≥ 2 %legal%

Condition Value

i < 0 %fatal%

i ≥ 0 ∧ length(T) < i %too low%

i ≥ 0 ∧ length(T) ≥ i %legal%

TAM’97 — TAM.fm 73/73 June 19, 1997 3:02 pm

Legality(SHIFT((n, T), i)) =

SHIFT((n, T)➘, i) = B.E2 where B, E1, E2: <example> [T = B.E1.E2 ∧ length(E1) = i ∧ length(E2) = i]

Legality(TOP(T)) =

TOP(T)➘ = x where B: <example>; x: <int> [T = B.PUSH(*, x)]

Condition Value

i < 0 %fatal%

i ≥ 0 ∧ length(T) < 2 * i %too low%

i ≥ 0 ∧ length(T) ≥ 2 * i %legal%

Condition Value

T = _ %empty%

T ≠ _ %legal%

